import tensorflow as tf
import numpy as np
import cv2
facenet = cv2.dnn.readNet('models/deploy.prototxt', 'models/res10_300x300_ssd_iter_140000.caffemodel')
model = tf.keras.models.load_model('models/mask_detector.model')
cap = cv2.VideoCapture('videos/04.mp4')
while True:
ret, img = cap.read()
if ret == False:
break
h, w, c = img.shape
blob = cv2.dnn.blobFromImage(img, size=(300, 300), mean=(104., 177., 123.))
facenet.setInput(blob)
dets = facenet.forward()
for i in range(dets.shape[2]):
confidence = dets[0, 0, i, 2]
if confidence < 0.5:
continue
x1 = int(dets[0, 0, i, 3] * w)
y1 = int(dets[0, 0, i, 4] * h)
x2 = int(dets[0, 0, i, 5] * w)
y2 = int(dets[0, 0, i, 6] * h)
face = img[y1:y2, x1:x2]
face_input = cv2.resize(face, dsize=(224, 224))
face_input = cv2.cvtColor(face_input, cv2.COLOR_BGR2RGB)
face_input = tf.keras.applications.mobilenet_v2.preprocess_input(face_input)
face_input = np.expand_dims(face_input, axis=0)
mask, nomask = model.predict(face_input).squeeze()
if mask > nomask:
color = (0, 255, 0)
else:
color = (0, 0, 255)
cv2.rectangle(img, pt1=(x1, y1), pt2=(x2, y2), thickness=2, color=color)
cv2.imshow('result', img)
if cv2.waitKey(1) == ord('q'):
break