[딥러닝] Attention 신경망 구현

RCC.AI·2024년 5월 21일
0

딥러닝

목록 보기
33/42
post-thumbnail

Attention 신경망 구현

import random
import tensorflow as tf
import konlpy.tag import Okt

하이퍼 파라메터 설정

EPOCHS = 200
NUM_WORDS = 2000

Encoder

class Encoder(tf.keras.Model):
	def __init__(self):
    	super(Encoder, self).__init__()
        self.emb = tf.keras.layers.Embedding(NUM_WORDS, 64)
        self.lstm = tf.keras.layers.LSTM(512, return_state=True)
        
    def call(self, x, training=False, mask=None):
    	x = self.emb(x)
        H, h, c = self.lstm(x)
        return H, h, c

Decoder

class Decoder(tf.keras.Model):
	def __init__(self):
    	super(Decoder, self).__init__()
        self.emb = tf.keras.layers.Embedding(NUM_WORDS, 64)
        self.lstm = tf.keras.layers.LSTM(512, return_sequences=True, return_state=True)
        self.att = tf.keras.layers.Attention()
        self.dense = tf.keras.layers.Dense(NUM_WORDS, activation='softmax')
        
    def call(self, x, training=False, mask=None)
    	x, s0, c0, H = inputs
        x = self.emb(x)
        S, h, c = self.lstm(x, initial_state=[s0, c0])
        
        S_ = tf.concat([s0[:, tf.newaxis, :], S[:, :1, :]], axis=1)
        A = self.att([S_, H])
        y = tf.concat([S, A], axis=-1)
        return self.dense(x), h, c

Transformer

class Seq2seq(tf.keras.Model):
    def __init__(self, sos, eos):
        super(Seq2seq, self).__init__()
        self.enc = Encoder()
        self.dec = Decoder()
        self.sos = sos
        self.eos = eos

    def call(self, inputs, training=False, mask=None):
        if training is True:
            x, y = inputs
            H, h, c = self.enc(x)
            y, _, _ = self.dec((y, h, c, H))
            return y
        else:
            x = inputs
            H, h, c = self.enc(x)
            
            y = tf.convert_to_tensor(self.sos)
            y = tf.reshape(y, (1, 1))

            seq = tf.TensorArray(tf.int32, 64)

            for idx in tf.range(64):
                y, h, c = self.dec([y, h, c, H])
                y = tf.cast(tf.argmax(y, axis=-1), dtype=tf.int32)
                y = tf.reshape(y, (1, 1))
                seq = seq.write(idx, y)

                if y == self.eos:
                    break

            return tf.reshape(seq.stack(), (1, 64))

Training & Test Loop

# Implement training loop
@tf.function
def train_step(model, inputs, labels, loss_object, optimizer, train_loss, train_accuracy):
    output_labels = labels[:, 1:]
    shifted_labels = labels[:, :-1]
    with tf.GradientTape() as tape:
        predictions = model([inputs, shifted_labels], training=True)
        loss = loss_object(output_labels, predictions)
    gradients = tape.gradient(loss, model.trainable_variables)

    optimizer.apply_gradients(zip(gradients, model.trainable_variables))
    train_loss(loss)
    train_accuracy(output_labels, predictions)

# Implement algorithm test
@tf.function
def test_step(model, inputs):
    return model(inputs, training=False)

학습 환경 정의 및 학습 동작

# Create model
model = Seq2seq(sos=tokenizer.word_index['\t'],
                eos=tokenizer.word_index['\n'])

# Define loss and optimizer
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()

# Define performance metrics
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')

for epoch in range(EPOCHS):
    for seqs, labels in train_ds:
        train_step(model, seqs, labels, loss_object, optimizer, train_loss, train_accuracy)

    template = 'Epoch {}, Loss: {}, Accuracy: {}'
    print(template.format(epoch + 1,
                          train_loss.result(),
                          train_accuracy.result() * 100))

    train_loss.reset_states()
    train_accuracy.reset_states()
profile
따라가기도 벅찬 AI Engineer 겸 부앙단

0개의 댓글