import torch
import torch.nn as nn
import torch.nn.functional as F

torch.nn.conv1d(
in_channels, # (1)-1 depth of input
out_channels, # (1)-2 depth of output
kernel_size, # (2) filter=kernel size
stride=1, # (3) filter 이동 step
padding=0, # (4) input 테두리에 적용될 padding size
dilation=1,groups=1,bias=True,padding_mode='zeros',device=None,dtype=None)
참조 : https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md




import torch
import torch.nn as nn
import torch.nn.functional as F
[x for x in torch.nn.__dir__() if ('Conv' in x)|('conv' in x)]
#['Conv1d', 'Conv2d', 'Conv3d',
# 'ConvTranspose1d',
# 'ConvTranspose2d',
# 'ConvTranspose3d']
1d-convolution

2d-convolution

3d-convolution
