profile
Theoretical Deep Learning
태그 목록
전체보기 (156)AI(100)paper-review(50)Generative Model(32)XAI(25)NLP(18)transformer(16)Attention(16)Deep Learning(15)gan(14)Object Detection(11)optimization(11)VQA(10)Medical AI(9)Survey paper(9)reinforcement learning(8)SPADE(8)Mathematical Model(7)summary(7)CNN(6)meta learning(6)presentation(6)Implementation(6)covid19(5)PyTorch(5)Code Review(5)Self-supervised Learning(5)DETR(5)code(5)수정중(5)Vision Transformer(5)metric(4)Image Captioning(4)Mathematics(4)covid-19(4)segmentation(4)Normalization(4)Linear Regression(4)Mathematical application(4)LSTM(3)Statistics(3)Represenation Learning(3)Simulated Annealing(3)VAE(3)Computer Vision(3)GauGAN(3)life(3)style(3)wgan(3)Contrastive Learning(3)LIME(3)SHAP(3)machine learning(3)Autonomous Vehicle(2)Partial Difference Equation(2)Data augmentation(2)Alpha Go(2)stanford(2)Adaptation(2)dynamic programming(2)Image Translation(2)SOTA(2)Representation Learning(2)AutoEncoder(2)bayesian(2)CV(2)DCGAN(2)Regularization(2)study(2)semantic segmentation(2)dataset(2)survey(2)language modeling(2)KL-Divergence(2)Few-Shot(2)Adversarial Explanation(2)filter(2)mixup(1)Video Generation(1)Matrix Calculus(1)keypoint detection(1)style transfer(1)Off-policy control(1)WGAN-GP(1)click(1)ConvGRU(1)image classification(1)graphics(1)cycleGAN(1)Oscar(1)Med-VQA(1)latex(1)LRP(1)Overparameterization(1)Nvidia(1)Variational Inference(1)papers to read(1)introduction(1)dqn(1)Unsupervised Model(1)Unsupervised Learning(1)Article Review(1)Mathematical apporach(1)Fourier Transform(1)Adversarial Learing(1)AAE(1)is(1)Logistic Regression(1)large-scale(1)Flownet(1)Norm(1)Related Work(1)Oncology(1)Sentence Segmentation(1)simulation(1)biology(1)clip(1)FID(1)Resnet(1)represenation(1)Image Pyramids(1)Gradient Descent(1)autonomous driving(1)Human-like(1)N-Gram(1)EM-Distance(1)loss function(1)distance(1)BOIL(1)mathematical modeling(1)alignment(1)Semantic Associations(1)bigdata(1)Technical Report(1)Linear representation(1)vscode(1)Wavenet(1)Tokenization(1)git(1)Zero-shot(1)Image Generation(1)Vector Calculus(1)TV-Distance(1)Partial differential equation(1)regular expression(1)report(1)fluid dynamics(1)Occlusion(1)video(1)Optimizaiton(1)MCMC(1)Knowledge distillation(1)Similiarty(1)Domain adaptation(1)MAML(1)Interpolation(1)Pre-training(1)StarGAN(1)Saliency map(1)dVAE(1)On-policy Method(1)evaluation(1)HCI(1)DeepLab(1)Phrase Localization(1)summarization(1)text generation(1)Text-to-Image Generation(1)X-ray(1)DNA(1)generalization(1)Linear Algebra(1)Books(1)DALLE(1)Vi-T(1)Lectures(1)transfer learning(1)Calculus(1)DALL-E(1)pix2pix(1)feature selection(1)sample(1)Model stitching(1)Filter Visualization(1)Lipchitz(1)Mathematical approach(1)MED(1)Radiology(1)MSE(1)JS-Divergence(1)Articulated Animation(1)Parameter Estimation(1)DeconvNet(1)Auto Encoder(1)Video Inpainting(1)COLUMN(1)Pseudo Inverse Matrix(1)cli(1)Language Model(1)Smoothing(1)Epidemic Spread(1)

[간단정리]Adversarial Self-Supervised Contrastive Learning(NIPS 2020)

Some notes on Adversarial, Self-Supervised, and Contrastive Learning

2022년 5월 10일
·
0개의 댓글
·
post-thumbnail

Some papers about representation

Some notes on representations..

2022년 4월 10일
·
0개의 댓글
·
post-thumbnail

DALL-E 2 & Representations

DALL-E 2 & Representation

2022년 4월 10일
·
0개의 댓글
·
post-thumbnail

[논문리뷰]X-Linear Attention Networks for Image Captioning

Paper review for X-Linear Attention blocks

2022년 1월 29일
·
0개의 댓글
·
post-thumbnail

[논문리뷰+Code]Contrastive Attention for Automatic Chest X-ray Report Generation

Paper review for Contrastive Attention for Chest X-ray Captioning Model

2022년 1월 24일
·
0개의 댓글
·
post-thumbnail

VSCODE 환경설정

.

2022년 1월 17일
·
0개의 댓글
·
post-thumbnail

[논문리뷰] From Show to Tell: A Survey on Deep Learning-based Image Captioning(2)(Language Model을 중심으로)

Paper review for "From Show to Tell: A Survey on Deep Learning-based Image Captioning"(Language Model을 중심으로)

2022년 1월 10일
·
0개의 댓글
·

Spelling Correction, Noisy Channel Model, State of the Art Systems

Some notes.

2022년 1월 6일
·
0개의 댓글
·
post-thumbnail

Language Modeling : Generalization, Smoothing, Interpolation, Good-Turing Smoothing, Kneser

N-gram Modeling을 할 때 Count형식으로 확률을 계산하면 거의 0이 나온다. 샤넌 시각화 방법은 우리가 만든 n-gram model에 대해 여러 가지 정보를 제공한다.가령, 셰익스피어를 기반으로 생성된 모델을 살펴보자.문제는, 셰익스 피어 내에 존재하는

2022년 1월 5일
·
0개의 댓글
·
post-thumbnail

[정리] Clinical AI: Low Resource Technique, Tasks, Survey, Research, Data, Model, ...

정리 : Low Resource Technique(Data Augmentation), Representation, Survey, Model, Data, Other Technique.

2022년 1월 4일
·
0개의 댓글
·