밤늦게 귀가할 때 안전을 위해 항상 택시를 이용하던 무지는 최근 야근이 잦아져 택시를 더 많이 이용하게 되어 택시비를 아낄 수 있는 방법을 고민하고 있습니다. "무지"는 자신이 택시를 이용할 때 동료인 어피치 역시 자신과 비슷한 방향으로 가는 택시를 종종 이용하는 것을 알게 되었습니다. "무지"는 "어피치"와 귀가 방향이 비슷하여 택시 합승을 적절히 이용하면 택시요금을 얼마나 아낄 수 있을 지 계산해 보고 "어피치"에게 합승을 제안해 보려고 합니다.
위 예시 그림은 택시가 이동 가능한 반경에 있는 6개 지점 사이의 이동 가능한 택시노선과 예상요금을 보여주고 있습니다.
그림에서 A와 B 두 사람은 출발지점인 4번 지점에서 출발해서 택시를 타고 귀가하려고 합니다. A의 집은 6번 지점에 있으며 B의 집은 2번 지점에 있고 두 사람이 모두 귀가하는 데 소요되는 예상 최저 택시요금이 얼마인 지 계산하려고 합니다.
[문제]
지점의 개수 n, 출발지점을 나타내는 s, A의 도착지점을 나타내는 a, B의 도착지점을 나타내는 b, 지점 사이의 예상 택시요금을 나타내는 fares가 매개변수로 주어집니다. 이때, A, B 두 사람이 s에서 출발해서 각각의 도착 지점까지 택시를 타고 간다고 가정할 때, 최저 예상 택시요금을 계산해서 return 하도록 solution 함수를 완성해 주세요.
만약, 아예 합승을 하지 않고 각자 이동하는 경우의 예상 택시요금이 더 낮다면, 합승을 하지 않아도 됩니다.
n | s | a | b | fares | result |
---|---|---|---|---|---|
6 | 4 | 6 | 2 | [[4, 1, 10], [3, 5, 24], [5, 6, 2], [3, 1, 41], [5, 1, 24], [4, 6, 50], [2, 4, 66], [2, 3, 22], [1, 6, 25]] | 82 |
7 | 3 | 4 | 1 | [[5, 7, 9], [4, 6, 4], [3, 6, 1], [3, 2, 3], [2, 1, 6]] | 14 |
6 | 4 | 5 | 6 | [[2,6,6], [6,3,7], [4,6,7], [6,5,11], [2,5,12], [5,3,20], [2,4,8], [4,3,9]] | 18 |
# 코드
def solution(n, s, a, b, fares):
answer = 100000000
# 인접 행렬 생성
# 각 지점에서 다른 지점까지의 최소값 계산
floyd = [[100000000] * (n+1) for i in range(n+1)]
for i in range(1, n+1):
floyd[i][i] = 0
# fares를 통해 각 지점 연결
for n1, n2, cost in fares:
floyd[n1][n2] = cost
floyd[n2][n1] = cost
# 플로이드 알고리즘을 통해 각 지점에서의 최소 비용 계산
for k in range(1, n+1):
for i in range(1, n+1):
for j in range(1, n+1):
floyd[i][j] = min(floyd[i][j], floyd[i][k] + floyd[k][j])
# [출발 지점 -> 특정 지점(경로) -> a, b] 비용 계산
# 해당 값 중 최소값 선택
for k in range(1, n+1):
answer = min(answer, floyd[s][k] + floyd[k][a] + floyd[k][b])
return answer