[Pythonic Code] Basic Linear Algebra 과제

연두·2021년 2월 14일
0

Python for ML

목록 보기
2/34
post-thumbnail

파이썬을 이용한 선형대수 코드이다.

강의 보고 해설영상 보면서 꾸역꾸역 정리한 내용이다.
주석으로 몰라요 어려워요가 난무하는 ㅋㅋㅋ

문제는 여기에 있다.

🌼 정답 코드


  1. vector 간 덧셈 또는 뺄셈 연산을 할 때, 연산이 가능한 사이즈인지를 확인하여 가능 여부를 True 또는 False로 반환함
# Problem 1
def vector_size_check(*vector_variables):
    # 모르겠음 -> 해설 참고
    return all(len(vector_variables[0]) == x for x in [len(vector) for vector in vector_variables[1:]])

# 실행결과
print(vector_size_check([1,2,3], [2,3,4], [5,6,7])) # Expected value: True
print(vector_size_check([1, 3], [2,4], [6,7])) # Expected value: True
print(vector_size_check([1, 3, 4], [4], [6,7])) # Expected value: False

  1. vector간 덧셈을 실행하여 결과를 반환함, 단 입력되는 vector의 갯수와 크기는 일정하지 않음
# Problem 2
def vector_addition(*vector_variables):
    if vector_size_check(*vector_variables) == False:
        raise ArithmeticError
    return [sum(t) for t in zip(*vector_variables)]

# 실행결과
print(vector_addition([1, 3], [2, 4], [6, 7])) # Expected value: [9, 14]
print(vector_addition([1, 5], [10, 4], [4, 7])) # Expected value: [15, 16]
print(vector_addition([1, 3, 4], [4], [6,7])) # Expected value: ArithmeticError

  1. vector간 뺄셈을 실행하여 결과를 반환함, 단 입력되는 vector의 갯수와 크기는 일정하지 않음
# Problem 3
def vector_subtraction(*vector_variables):
    if vector_size_check(*vector_variables) == False:
        raise ArithmeticError
    # 해설 참고
    # x - y - z = 2x - (x+y+z)
    return [t[0]*2 - sum(t) for t in zip(*vector_variables)]

# 실행결과
print(vector_subtraction([1, 3], [2, 4])) # Expected value: [-1, -1]
print(vector_subtraction([1, 5], [10, 4], [4, 7])) # Expected value: [-13, -6]

  1. 하나의 scalar 값을 vector에 곱함, 단 입력되는 vector의 크기는 일정하지 않음
# Problem 4
def scalar_vector_product(alpha, vector_variable):
    return [alpha * t for t in vector_variable]

# 실행결과
print (scalar_vector_product(5,[1,2,3])) # Expected value: [5, 10, 15]
print (scalar_vector_product(3,[2,2])) # Expected value: [6, 6]
print (scalar_vector_product(4,[1])) # Expected value: [4]

  1. matrix 간 덧셈 또는 뺄셈 연산을 할 때, 연산이 가능한 사이즈인지를 확인하여 가능 여부를 True 또는 False로 반환함
# Problem 5
def matrix_size_check(*matrix_variables):
    # 어려워요!!!!!!!!! -> 해설 참고
    return all([len(set(len(matrix[0]) for matrix in matrix_variables)) == 1]) \
           and all([len(matrix_variables[0]) == len(matrix) for matrix in matrix_variables])

# 실행결과
matrix_x = [[2, 2], [2, 2], [2, 2]]
matrix_y = [[2, 5], [2, 1]]
matrix_z = [[2, 4], [5, 3]]
matrix_w = [[2, 5], [1, 1], [2, 2]]

print (matrix_size_check(matrix_x, matrix_y, matrix_z)) # Expected value: False
print (matrix_size_check(matrix_y, matrix_z)) # Expected value: True
print (matrix_size_check(matrix_x, matrix_w)) # Expected value: True

  1. 비교가 되는 n개의 matrix가 서로 동치인지 확인하여 True 또는 False를 반환함
# Problem 6
def is_matrix_equal(*matrix_variables):
    # 얘도 생각해내지 못했음
    return all([all([len(set(row)) == 1 for row in zip(*matrix)])
                for matrix in zip(*matrix_variables)])

# 실행결과
matrix_x = [[2, 2], [2, 2]]
matrix_y = [[2, 5], [2, 1]]

print (is_matrix_equal(matrix_x, matrix_y, matrix_y, matrix_y)) # Expected value: False
print (is_matrix_equal(matrix_x, matrix_x)) # Expected value: True

  1. matrix간 덧셈을 실행하여 결과를 반환함, 단 입력되는 matrix의 갯수와 크기는 일정하지 않음
# Problem 7
def matrix_addition(*matrix_variables):
    if matrix_size_check(*matrix_variables) == False:
        raise ArithmeticError
    return [[sum(row) for row in zip(*t)] for t in zip(*matrix_variables)]

# 실행결과
matrix_x = [[2, 2], [2, 2]]
matrix_y = [[2, 5], [2, 1]]
matrix_z = [[2, 4], [5, 3]]

print (matrix_addition(matrix_x, matrix_y)) # Expected value: [[4, 7], [4, 3]]
print (matrix_addition(matrix_x, matrix_y, matrix_z)) # Expected value: [[6, 11], [9, 6]]

  1. matrix간 뺄셈을 실행하여 결과를 반환함, 단 입력되는 matrix의 갯수와 크기는 일정하지 않음
# Problem 8
def matrix_subtraction(*matrix_variables):
    if matrix_size_check(*matrix_variables) == False:
        raise ArithmeticError
    return [ [row[0]*2 - sum(row) for row in zip(*t)] for t in zip(*matrix_variables) ]

# 실행결과
matrix_x = [[2, 2], [2, 2]]
matrix_y = [[2, 5], [2, 1]]
matrix_z = [[2, 4], [5, 3]]

print (matrix_subtraction(matrix_x, matrix_y)) # Expected value: [[0, -3], [0, 1]]
print (matrix_subtraction(matrix_x, matrix_y, matrix_z)) # Expected value: [[-2, -7], [-5, -2]]

  1. matrix의 역행렬을 구하여 결과를 반환함, 단 입력되는 matrix의 크기는 일정하지 않음
# Problem 9
def matrix_transpose(matrix_variable):
    return [[element for element in t] for t in zip(*matrix_variable)]

# 실행결과
matrix_w = [[2, 5], [1, 1], [2, 2]]
print(matrix_transpose(matrix_w))

  1. 하나의 scalar 값을 matrix에 곱함, 단 입력되는 matrix의 크기는 일정하지 않음
# Problem 10
def scalar_matrix_product(alpha, matrix_variable):
    return [ scalar_vector_product(alpha, row) for row in matrix_variable ]


# 실행결과
matrix_x = [[2, 2], [2, 2], [2, 2]]
matrix_y = [[2, 5], [2, 1]]
matrix_z = [[2, 4], [5, 3]]
matrix_w = [[2, 5], [1, 1], [2, 2]]

print(scalar_matrix_product(3, matrix_x)) #Expected value: [[6, 6], [6, 6], [6, 6]]
print(scalar_matrix_product(2, matrix_y)) #Expected value: [[4, 10], [4, 2]]
print(scalar_matrix_product(4, matrix_z)) #Expected value: [[8, 16], [20, 12]]
print(scalar_matrix_product(3, matrix_w)) #Expected value: [[6, 15], [3, 3], [6, 6]]

  1. 두 개의 matrix가 입력 되었을 경우, 두 matrix의 곱셈 연산의 가능 여부를 True 또는 False로 반환함
# Problem 11
def is_product_availability_matrix(matrix_a, matrix_b):
    return len([col for col in zip(*matrix_a)]) == len(matrix_b)

# 실행결과
matrix_x= [[2, 5], [1, 1]]
matrix_y = [[1, 1, 2], [2, 1, 1]]
matrix_z = [[2, 4], [5, 3], [1, 3]]

print(is_product_availability_matrix(matrix_y, matrix_z)) # Expected value: True
print(is_product_availability_matrix(matrix_z, matrix_x)) # Expected value: True
print(is_product_availability_matrix(matrix_z, matrix_w)) # Expected value: False //matrix_w가없습니다
print(is_product_availability_matrix(matrix_x, matrix_x)) # Expected value: True

  1. 곱셈 연산이 가능한 두 개의 matrix의 곱셈을 실행하여 반환함
# Problem 12
def matrix_product(matrix_a, matrix_b):
    if is_product_availability_matrix(matrix_a, matrix_b) == False:
        raise ArithmeticError
    return [[sum(a*b for a,b in zip(row_a, col_b)) for col_b in zip(*matrix_b)] for row_a in matrix_a]

# 실행결과
matrix_x= [[2, 5], [1, 1]]
matrix_y = [[1, 1, 2], [2, 1, 1]]
matrix_z = [[2, 4], [5, 3], [1, 3]]

print(matrix_product(matrix_y, matrix_z)) # Expected value: [[9, 13], [10, 14]]
print(matrix_product(matrix_z, matrix_x)) # Expected value: [[8, 14], [13, 28], [5, 8]]
print(matrix_product(matrix_x, matrix_x)) # Expected value: [[9, 15], [3, 6]]
print(matrix_product(matrix_z, matrix_w)) # Expected value: False

0개의 댓글