beautifulsoup (웹데이터크롤링)

솔비·2024년 1월 2일
0
post-thumbnail

BeautifulSoup


파이썬에서 사용할 수 있는 웹데이터 크롤링 라이브러리

install
- conda install -c anaconda beautifulsoup4
- pip install beautifulsoup4

from bs4 import BeautifulSoup
page = open("../data/03.beautifulsoup.html","r").read()
soup = BeautifulSoup(page,"html.parser")


➡️ open으로 가져온 html구문

print(soup.prettify())
들여쓰기로 html 구문 확인 가능



1. head 태그확인


soup.head

<head>
<title> Very Simple HTML Code by SXLBL </title>
</head>



2. body 태그확인


soup.body

<body>
<div>
<p class="inner-text first-item" id="first">
                Happy Data Study Note
                <a href="https://velog.io/@sxlbl/posts" id="pw-link">Velog</a>
</p>
<p class="inner-text second-item">
                Happy Data Science.
                <a href="https://www.python.org" id="py-link" target="_blank">python</a>
</p>
</div>
<p class="outer-text first-item" id="second">
<b> Data Science funny</b>
</p>
<p class="outer-text">
<i> All I need is Love</i>
</p>
</body>



3. p 태그 확인


- 맨 앞 p 출력

soup.p
soup.find("p")

<p class="inner-text first-item" id="first">
                Happy Data Study Note
                <a href="https://velog.io/@sxlbl/posts" id="pw-link">Velog</a>
</p>




🚩 조건추가
soup.find('p',class_= "inner-text first-item")

<p class="inner-text first-item" id="first">
                Happy Data Study Note
                <a href="https://velog.io/@sxlbl/posts" id="pw-link">Velog</a>
</p>

soup.find("p",{"class":"outer-text"})

<p class="outer-text first-item" id="second">
<b> Data Science funny</b>
</p>

🚩다중조건
soup.find("p", {"class" : "inner-text first-item","id":"first"})

<p class="inner-text first-item" id="first">
                Happy Data Study Note
                <a href="https://velog.io/@sxlbl/posts" id="pw-link">Velog</a>
</p>




🚩 text만 추출
soup.find("p",{"class":"outer-text"}).text

'\n Data Science funny\n'

soup.find("p",{"class":"outer-text"}).text.strip()

'Data Science funny'



- 모든 P출력

soup.find_all("p")
🌟 리스트로 반환됨

[<p class="inner-text first-item" id="first">
                 Happy Data Study Note
                 <a href="https://velog.io/@sxlbl/posts" id="pw-link">Velog</a>
 </p>,
 <p class="inner-text second-item">
                 Happy Data Science.
                 <a href="https://www.python.org" id="py-link" target="_blank">python</a>
 </p>,
 <p class="outer-text first-item" id="second">
 <b> Data Science funny</b>
 </p>,
 <p class="outer-text">
 <i> All I need is Love</i>
 </p>]




🚩 조건추가

soup.find_all("p", {"class" : "outer-text" })
soup.find_all(class_ = "outer-text" )

[<p class="outer-text first-item" id="second">
 <b> Data Science funny</b>
 </p>,
 <p class="outer-text">
 <i> All I need is Love</i>
 </p>]

soup.find_all(id = "pw-link")

[<a href="https://velog.io/@sxlbl/posts" id="pw-link">Velog</a>]




🚩 text만 추출
print(soup.find_all(id = "pw-link")[0].text)
print(soup.find_all(id = "pw-link")[0].string)
print(soup.find_all(id = "pw-link")[0].get_text())

Velog
Velog
Velog

print(soup.find_all("p")[0].text)
print(soup.find_all("p")[0].get_text())

                Happy Data Study Note
                Velog

print(soup.find_all("p")[1].text)
print(soup.find_all("p")[1].get_text())

                Happy Data Science.
                python




🚩 for문활용

for each_tag in soup.find_all("p"):
    print('='*50)
    print(each_tag.get_text())
    
#or

for each_tag in soup.find_all("p"):
    print('='*50)
    print(each_tag.get_text())
#결과값
==================================================

                Happy Data Study Note
                Velog

==================================================

                Happy Data Science.
                python

==================================================

 Data Science funny

==================================================

 All I need is Love




🚩a태그에서 href 속성값에 있는 값 추출

links = soup.find_all("a")

for each in links :
    href = each.get("href")
    text = each.get_text()

    print(text + " -> " +href)
#결과값
Velog -> https://velog.io/@sxlbl/posts
python -> https://www.python.org



예제 | 네이버금융

네이버페이증권 링크 : https://finance.naver.com/marketindex/


import requests
# = from urllib.request import Request
from bs4 import BeautifulSoup

url = "https://finance.naver.com/marketindex/"
response = requests.get(url)
soup = BeautifulSoup(response.text,"html.parser")
print(soup.prettify())

➡️ 네이버페이 HTML 불러오기

🌟 용어

  • # : id (HTML에서 id는 고유값)
  • . : class
  • > : 하위에 라는 뜻



1. 환전 고시 환율 부분 불러오기

exchangeList = soup.select('#exchangeList > li')
exchangeList
➡️ id exchangelist에 해당하는 li(list) 불러오기 - 총 4개




2. 필요항목 가져오기

exchange_datas = []
baseurl = "https://finance.naver.com/"

for item in exchangeList :
    data = {
        "title" : item.select_one(".h_lst").text,
        "exchange" : item.select_one(".value").text,
        "change" : item.select_one(".change").text,
        # "updown" : item.select_one(".head_info.point_up > .blind").text,
        "link" : baseurl + item.select_one("a").get("href")
    }
    exchange_datas.append(data)

exchange_datas
  • title | class_ = h_lst에 해당하는 text
  • exchange | class_ = value에 해당하는 text
  • change | class_ = change 해당하는 text
  • link | a 에서 href 가져오기
  • updown | class_ = head_info.point_up의 > 하위에 있는 blind 클래스
    ➕ HTML 문법 구문에는 head_info point_up 이지만, 파이썬에서는 공백을 .으로 적어줘야함
    ➕ 환율이 상승일 경우 head_info.point_up 하락일경우 head_info.point_dn 으로 달라서 for문 사용 불가
exchange_datas[0]["updown"] = exchangeList[0].select_one("div.head_info.point_up > .blind").text
exchange_datas[1]["updown"] = exchangeList[1].select_one("div.head_info.point_dn > .blind").text
exchange_datas[2]["updown"] = exchangeList[2].select_one("div.head_info.point_up > .blind").text
exchange_datas[3]["updown"] = exchangeList[3].select_one("div.head_info.point_up > .blind").text

➡️ 수기로 넣어주었음




3. 엑셀보내기

import pandas as pd
df = pd.DataFrame(exchange_datas)
df.to_excel("./naverfinance.xlsx")



예제 | 위키백과 크롤링

url에 한글이 껴있는경우
html = "https://ko.wikipedia.org/wiki/{search_words}"
한글부분 {}포맷처리 후

from urllib.request import urlopen, Request
import urllib

req = Request(html.format(search_words = urllib.parse.quote("여명의눈동자")))
response = urlopen(req)
soup = BeautifulSoup(response,"html.parser")
print(soup.prettify())

request에서 변수.format(변수 = urllib.parse.quote("내용"))으로 처리



====== 총정리 ======



import


from bs4 import BeautifulSoup
➡️ BeautifulSoup(경로orURL, "html.parser")

import requests
➡️ requests.get(url)
import urllib.request import urlopen
➡️ urlopen(url)

1. open("파일경로","r").read()

: HTML문서가 파일로 존재할 때

from bs4 import BeautifulSoup

page = open("../data/03.beautifulsoup.html","r").read()
soup = BeautifulSoup(page,"html.parser")
print(soup.prettify())

2. requests.get(url)

: url로 가져올 때

import requests
from bs4 import BeautifulSoup

url = "https://finance.naver.com/marketindex/"
response = requests.get(url)
soup = BeautifulSoup(response.text,"html.parser")
print(soup.prettify())

3. urllib

: url에 한글이 있어 깨지는경우

from urllib.request import urlopen, Request
import urllib


# html = https://ko.wikipedia.org/wiki/여명의_눈동자
html = "https://ko.wikipedia.org/wiki/{search_words}"
req = Request(html.format(search_words = urllib.parse.quote("여명의눈동자")))
response = urlopen(req)
soup = BeautifulSoup(response,"html.parser")
print(soup.prettify())

{}로 변수 설정 후
Request()에서 format

or decoding 시키기

파이썬 urllib, requests 차이



HTML로 내용확인

soup 변수에 HTML 크롤링 or 경로저장 후


1. prettify()

print(soup.prettify())

: HTML구문 들여쓰기 확인가능

2. head

soup.head

: HTML구문 내 head 확인가능

3. body

soup.body

: HTML구문 내 body 확인가능

4. find()

soup.find("p")
soup.find('p',class_= "inner-text first-item")
soup.find("p",{"class":"outer-text"})

: 첫 p구문 찾기 , 로 조건걸기 가능

5. find_all()

soup.find_all("p")
soup.find_all(class_ = "outer-text" )
soup.find_all("p", {"class" : "outer-text" })

: 전체 P구문 찾기 ,로 조건걸기 가능

➕ text만 보기

print(soup.find_all(id = "pw-link")[0].text)
print(soup.find_all(id = "pw-link")[0].string)
print(soup.find_all(id = "pw-link")[0].get_text())

: HTML 구문 날리고 text만 뽑기

6. select()

🌟 용어

  • # : id (HTML에서 id는 고유값)
  • . : class
  • > : 하위에 라는 뜻

경로를 통해 찾을 때 유용
exchangeList = soup.select('#exchangeList > li')

참고


Daily Study Note
profile
Study Log

0개의 댓글