- 출발 노드를 설정
- 최단 거리 테이블을 초기화
- 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택
- 해당 노드를 거쳐 다른 노드로 가는 비용을 계산하여 최단 거리 테이블을 갱신함
- 위 과정에서 3번과 4번을 반복함
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수, 간선의 개수를 입력 받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력 받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트 만들기
graph = [[] for i in range(n + 1)]
# 방문한 적이 있는지 체크하는 목적의 리스트 만들기
visited = [False] * (n + 1)
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)
# 모든 간선 정보 입력 받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
# 방문하지 않은 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
def get_smallest_node():
min_value = INF
index = 0 # 가장 최단 거리가 짧은 노드(인덱스)
for i in range(1, n + 1):
if distance[i] < min_value and not visited[i]:
min_value = distance[i]
index = i
return index
# 다익스트라 최단 경로 알고리즘
def dijkstra(start):
# 시작 노드에 대해서 초기화
distance[start] = 0
visited[start] = True
for j in graph[start]:
distance[j[0]] = j[1]
# 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
for i in range(n - 1):
# 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
now = get_smallest_node()
visited[now] = True
# 현재 노드와 연결된 다른 노드를 확인
for j in graph[now]:
cost = distance[now] + j[1]
# 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[j[0]]:
distance[j[0]] = cost
# 다익스트라 알고리즘 수행
dijkstra(start)
# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
# 도달할 수 없는 겨우, 무한이라고 출력
if distance[i] == INF:
print("INFINITY")
# 도달할 수 있는 경우 거리를 출력
else:
print(distance[i])
# input
6 11
1
1 2 2
1 3 5
1 4 1
2 4 2
2 3 3
3 2 3
3 6 5
4 3 3
4 5 1
5 3 1
5 6 2
# output
0
2
3
1
2
4
우선순위가 가장 높은 데이터를 가장 먼저 삭제하는 자료구조
대부분의 프로그래밍 언어에서 표준 라이브러리 형태로 지원
Heap은 우선순위 큐를 구현하기 위해 사용하는 자료구조 중 하나
import heapq
# 오름차순 힙 정렬 (heap sort)
def heapsort(iterable):
h = []
result = []
# 모든 원소를 차례대로 힙에 삽입
for value in iterable:
heapq.heappush(h, value)
# 힙에 삽입된 모든 원소를 차례대로 꺼내어 담기
for i in range(len(h)):
result.append(heapq.heappop(h))
return result
result = heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print(result)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
import heapq
# 내림차순 힙 정렬 (heap sort)
def heapsort(iterable):
h = []
result = []
# 모든 원소를 차례대로 힙에 삽입
for value in iterable:
heapq.heappush(h, -value) # 데이터의 부호를 바꿔서 넣음
# 힙에 삽입된 모든 원소를 차례대로 꺼내어 담기
for i in range(len(h)):
result.append(-heapq.heappop(h)) # 데이터의 부호를 바꿔서 꺼냄
return result
result = heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print(result)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수, 간선의 개수를 입력 받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력 받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트 만들기
graph = [[] for i in range(n + 1)]
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)
# 모든 간선 정보 입력 받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
# 다익스트라 최단 경로 알고리즘
def dijkstra(start):
q = []
# 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
heapq.heappush(q, (0, start))
distance[start] = 0
while q: # 큐가 비어 있지 않다면
# 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
dist, now = heapq.heappop(q)
# 현재 노드가 이미 처리된 적이 있는 노드라면 무시
if distance[now] < dist:
continue
# 현재 노드와 연결된 다른 인접한 노드들을 확인
for i in graph[now]:
cost = dist + i[1]
# 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[i[0]]:
distance[i[0]] = cost
heapq.heappush(q, (cost, i[0]))
# 다익스트라 알고리즘 수행
dijkstra(start)
# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
# 도달할 수 없는 겨우, 무한이라고 출력
if distance[i] == INF:
print("INFINITY")
# 도달할 수 있는 경우 거리를 출력
else:
print(distance[i])
힙 자료구조를 이용하는 다익스트라 알고리즘의 시간 복잡도는 O(ElogV)
노드를 하나씩 꺼내 검사하는 반복문은 노드의 개수 V 이상의 횟수로는 처리되지 않음
직관적으로 전체 과정은 E개의 원소를 우선순위 큐에 넣었다가 모두 빼내는 연산과 매우 유사함
O(ElogE) -> O(ElogV^2) -> O(2ElogV) -> O(ElogV)
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수 및 간선의 개수를 입력 받기
n = int(input())
m = int(input())
# 2차원 리스트(그래프 표현)를 만들고, 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]
# 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n + 1):
for b in range(1, n + 1):
if a == b:
graph[a][b] = 0
# 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for _ in range(m):
# A에서 B로 가는 비용은 C라고 설정
a, b, c = map(int, input().split())
graph[a][b] = c
# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n + 1):
for a in range(1, n + 1):
for b in range(1, n + 1):
graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])
# 수행된 결과를 출력
for a in range(1, n + 1):
for b in range(1, n + 1):
# 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if graph[a][b] == INF:
print("INFINITY", end = ' ')
# 도달할 수 있는 경우 거리를 출력
else:
print(graph[a][b], end = ' ')
print()
# input
4
7
1 2 4
1 4 6
2 1 3
2 3 7
3 1 5
3 4 4
4 3 2
# output
0 4 8 6
3 0 7 9
5 9 0 4
7 11 2 0