Aligning Large Language Models with Human: A Survey

SUNGYOON LEE·2023년 8월 21일
1

ChatGPT를 시작으로 대규모 언어 모델이 쏟아지고 있는 현재 상황에서 LLM을 주어진 task에 맞춰서 잘 활용하기 위해서는 여러 분야를 공부해야 한다. 아래는 공부해야 할 키워드들에 대한 정리이다.

Aligning For LLMs

How to collect data

  • Instructions From Human
    • NLP BenchMarks
      • PromptSource
      • SuperNaturalInstruction
      • FLAN
      • Unnatural Instructions
      • OIG
    • Hand-crafted Instructions
      • Dolly-v2
      • OpenAssistant
      • COIG
      • ShareGPT
  • Instruction From Strong LLMs
    • Self-Instruct
      • Improving Input Quality
        • Self-Instruction
        • Lamini-lm
        • Baize
        • AttrPrompt
        • WizardLM
        • WizardCoder
        • Unnatural Instructions
        • Phi-1
      • Improving Output Quality
        • CoT
        • Orca
    • Multi-Turn Instructions
      • Baize
      • CAMEL
      • SelFee
      • UltraLLaMA
      • Vicuna
    • Multilingual Instructions
      • Phoenix
      • BayLing
      • BactrianX
  • Instruction Data Management
    • Instruction Implications
      • TULU
      • FLACUNA
      • Data-Constrained LM
      • BELLE
    • Instruction Quantity
      • IFS
      • LIMA
      • Instruction Mining
      • Alpagasus

How to train

  • Online Human Alignment
    • RLHF(Reinforcement Learning from Human Feedback)
    • RAFT(Reward rAnked FineTuning for Generative Foundation Model Alignment)
  • Offline Human Alignment
    • Rank-based Training
      • DPO(Direct Preference Optimization)
      • PRO(Preference Ranking Optimization for Human Alignment)
      • RRHF(Rank Responses to Align Language Models with Human Feedback without tears)
      • SLiC
    • Language-based Training
      • Conditional Behavior Cloning
      • CoH(Chain of Hindsight Aligns Language Models with Feedback)
      • Stable Alignment
      • SelFee
      • SecondThoughts
  • Parameter-Efficient Training(a.k.a PEFT)
    • Prefix Tuning
    • Prompt Tuning
    • LoRA(Low Rank Adaptation of Large Language Models)
    • AdaLoRA(Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning)

How to evaluate

  • Evaluation Benchmarks
    • Closed-set Benchmarks
    • Open-set Benchmarks
  • Evaluation Paradigms
    • Human-based Evaluation
    • LLMs-based Evaluation

etc

  • continual learning of LLMs
  • quantization of LLMs

reference: https://arxiv.org/pdf/2307.12966v1.pdf

profile
매일 매일 한 걸음씩 나아가고자 합니다.

0개의 댓글