MNIST
CIAR10
LQ
HQ
Poison
Adv

(1) Improving the overall accuracy of a model, (2) Fixing security vulnerabilities caused by poisoning of training data and (3) Improving the robustness of the network against adversarial attacks. Our evaluation on MNIST and CIFAR-10 models shows that NNrepair can improve the accuracy by 45.56 percentage points on poisoned data and 10.40 percentage points on adversarial data.