df.isna()
df.isna().any()
df.isna().sum()
df.isna().sum().plot(kind='bar')
# Check individual values for missing values
print(avocados_2016.isna())
date type year avg_price size nb_sold
52 False False False False False False
53 False False False False False False
54 False False False False False False
55 False False False False False False
56 False False False False False False
.. ... ... ... ... ... ...
944 False False False False False False
945 False False False False False False
946 False False False False False False
947 False False False False False False
948 False False False False False False
# Check each column for missing values
print(avocados_2016.isna().any())
[312 rows x 6 columns]
date False
type False
year False
avg_price False
size False
nb_sold False
dtype: bool
# Bar plot of missing values by variable
avocados_2016.isna().sum().plot(kind='bar')
# Show plot
plt.show()
df.dropna()
df.fillna(0)