모두를 위한 딥러닝 시즌 2:: Lab-11-5 RNN seq2seq

Uomnf97·2021년 8월 23일
0

RNN seq2seq

seq2seq

  • Seq2Seq가 잘 적용되는 예 : chatbot, 번역
  • 다음과 같은 상황에서는 잘 대답할 수 있을까? 대부분의 모델은 단어가 입력됨에 동시에 다음단어를 예측해서 출력됨으로 긍정-부정으로 이어지는 문장같은 경우 예측해서 대답하기가 쉽지 않음. 이러한 경우 seq2seq모델이 사용됨

Apply Seq2seq

Encoder - decoder

  • seq2seq모델의 대표적인 특징으로 Encoder에 모든 문장이 입력되고 난뒤, decoder에 모든 문장을 입력받아 전달함. 그리고 hidden state를 통해 단어가 모두 입력된 다음 셀로 전달하게 되어, 모든 문장을 듣고, 말하는 방식이 적용될 수 있는 모델임
  • source text를 target text로 바꿔야하는 과정임. 각각 training/test set으로 나눠줘야함
  • 아래의 코드로 전반적인 흐름을 파악할 수 있음
import random
import torch
import torch.nn as nn
from torch import optim

# declare max length for sentence
SOURCE_MAX_LENGTH = 10
TARGET_MAX_LENGTH = 12

# preprocess the corpus
load_pairs, load_source_vocab, load_target_vocab = preprocess(raw, SOURCE_MAX_LENGTH, TARGET_MAX_LENGTH)
print(random.choice(load_pairs))

# declare the encoder and the decoder
enc_hidden_size = 16
dec_hidden_size = enc_hidden_size
enc = Encoder(load_source_vocab.n_vocab, enc_hidden_size).to(device)
dec = Decoder(dec_hidden_size, load_target_vocab.n_vocab).to(device)

# train seq2seq model
train(load_pairs, load_source_vocab, load_target_vocab, enc, dec, 5000, print_every=1000)

# check the model with given data
evaluate(load_pairs, load_source_vocab, load_target_vocab, enc, dec, TARGET_MAX_LENGTH)

Data Processing

torch.manual_seed(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

raw = ["I feel hungry.	나는 배가 고프다.",
       "Pytorch is very easy.	파이토치는 매우 쉽다.",
       "Pytorch is a framework for deep learning.	파이토치는 딥러닝을 위한 프레임워크이다.",
       "Pytorch is very clear to use.	파이토치는 사용하기 매우 직관적이다."]
       
# fix token for "start of sentence" and "end of sentence"
SOS_token = 0
EOS_token = 1

# class for vocabulary related information of data
class Vocab:
    def __init__(self):
        self.vocab2index = {"<SOS>": SOS_token, "<EOS>": EOS_token}
        self.index2vocab = {SOS_token: "<SOS>", EOS_token: "<EOS>"}
        self.vocab_count = {}
        self.n_vocab = len(self.vocab2index)

    def add_vocab(self, sentence):
        for word in sentence.split(" "):
            if word not in self.vocab2index:
                self.vocab2index[word] = self.n_vocab
                self.vocab_count[word] = 1
                self.index2vocab[self.n_vocab] = word
                self.n_vocab += 1
            else:
                self.vocab_count[word] += 1
                
# filter out the long sentence from source and target data
def filter_pair(pair, source_max_length, target_max_length):
    return len(pair[0].split(" ")) < source_max_length and len(pair[1].split(" ")) < target_max_length
    
# read and preprocess the corpus data
def preprocess(corpus, source_max_length, target_max_length):
    print("reading corpus...")
    pairs = []
    for line in corpus:
        pairs.append([s for s in line.strip().lower().split("\t")])
    print("Read {} sentence pairs".format(len(pairs)))

    pairs = [pair for pair in pairs if filter_pair(pair, source_max_length, target_max_length)]
    print("Trimmed to {} sentence pairs".format(len(pairs)))

    source_vocab = Vocab()
    target_vocab = Vocab()

    print("Counting words...")
    for pair in pairs:
        source_vocab.add_vocab(pair[0])
        target_vocab.add_vocab(pair[1])
    print("source vocab size =", source_vocab.n_vocab)
    print("target vocab size =", target_vocab.n_vocab)

    return pairs, source_vocab, target_vocab
    

Neaural Net Setting

  • Encoder, Decoder를 정희하는 코드부분
# declare simple encoder
class Encoder(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(Encoder, self).__init__()
        self.hidden_size = hidden_size
        self.embedding = nn.Embedding(input_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size)

    def forward(self, x, hidden):
        x = self.embedding(x).view(1, 1, -1)
        x, hidden = self.gru(x, hidden)
        return x, hidden
        
# declare simple decoder
class Decoder(nn.Module):
    def __init__(self, hidden_size, output_size):
        super(Decoder, self).__init__()
        self.hidden_size = hidden_size
        self.embedding = nn.Embedding(output_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size)
        self.out = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, x, hidden):
        x = self.embedding(x).view(1, 1, -1)
        x, hidden = self.gru(x, hidden)
        x = self.softmax(self.out(x[0]))
        return x, hidden
# convert sentence to the index tensor
def tensorize(vocab, sentence):
    indexes = [vocab.vocab2index[word] for word in sentence.split(" ")]
    indexes.append(vocab.vocab2index["<EOS>"])
    return torch.Tensor(indexes).long().to(device).view(-1, 1)

Training

  • tensorize : sentence를 one-hot encoding으로 바꿔주는 함수
# convert sentence to the index tensor
def tensorize(vocab, sentence):
    indexes = [vocab.vocab2index[word] for word in sentence.split(" ")]
    indexes.append(vocab.vocab2index["<EOS>"])
    return torch.Tensor(indexes).long().to(device).view(-1, 1)

# training seq2seq
def train(pairs, source_vocab, target_vocab, encoder, decoder, n_iter, print_every=1000, learning_rate=0.01):
    loss_total = 0

    encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
    decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)

    training_batch = [random.choice(pairs) for _ in range(n_iter)]
    training_source = [tensorize(source_vocab, pair[0]) for pair in training_batch]
    training_target = [tensorize(target_vocab, pair[1]) for pair in training_batch]

    criterion = nn.NLLLoss()

    for i in range(1, n_iter + 1):
        source_tensor = training_source[i - 1]
        target_tensor = training_target[i - 1]

        encoder_hidden = torch.zeros([1, 1, encoder.hidden_size]).to(device)

        encoder_optimizer.zero_grad()
        decoder_optimizer.zero_grad()

        source_length = source_tensor.size(0)
        target_length = target_tensor.size(0)

        loss = 0

        for enc_input in range(source_length):
            _, encoder_hidden = encoder(source_tensor[enc_input], encoder_hidden)

        decoder_input = torch.Tensor([[SOS_token]]).long().to(device)
        decoder_hidden = encoder_hidden # connect encoder output to decoder input

        for di in range(target_length):
            decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
            loss += criterion(decoder_output, target_tensor[di])
            decoder_input = target_tensor[di]  # teacher forcing

        loss.backward()

        encoder_optimizer.step()
        decoder_optimizer.step()

        loss_iter = loss.item() / target_length
        loss_total += loss_iter

        if i % print_every == 0:
            loss_avg = loss_total / print_every
            loss_total = 0
            print("[{} - {}%] loss = {:05.4f}".format(i, i / n_iter * 100, loss_avg))

Evaluation

# insert given sentence to check the training
def evaluate(pairs, source_vocab, target_vocab, encoder, decoder, target_max_length):
    for pair in pairs:
        print(">", pair[0])
        print("=", pair[1])
        source_tensor = tensorize(source_vocab, pair[0])
        source_length = source_tensor.size()[0]
        encoder_hidden = torch.zeros([1, 1, encoder.hidden_size]).to(device)

        for ei in range(source_length):
            _, encoder_hidden = encoder(source_tensor[ei], encoder_hidden)

        decoder_input = torch.Tensor([[SOS_token]], device=device).long()
        decoder_hidden = encoder_hidden
        decoded_words = []

        for di in range(target_max_length):
            decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
            _, top_index = decoder_output.data.topk(1)
            if top_index.item() == EOS_token:
                decoded_words.append("<EOS>")
                break
            else:
                decoded_words.append(target_vocab.index2vocab[top_index.item()])

            decoder_input = top_index.squeeze().detach()

        predict_words = decoded_words
        predict_sentence = " ".join(predict_words)
        print("<", predict_sentence)
        print("")
profile
사회적 가치를 실현하는 프로그래머

0개의 댓글