[Linear Algebra] Linear Independence

JinKwon·2024년 1월 19일
1

이번 글에서는 선형 독립에 대해서 다뤄보도록 하겠습니다.

1. 선형 독립(Linear Independence)

쉽게 말해서 선형 독립이란? Combination의 결과 벡터가 0인 것을 말하며, 이때 계수들이 모두 0이어야만 성립되는 것을 Independent하다고 말합니다.

선형 결합(Linear Combination)

  • 선형 결합이란 벡터공간 VV에 속하는 어떤 벡터v1...vnv_1...v_n와 어떤 스칼라 a1...ana_1...a_n에 대하여 다음을 만족하는 벡터 vv를 선형 결합이라고 합니다.
    v=a1v1+a2v2+...+anvnv = a_1v_1 + a_2v_2+...+a_nv_n
  • 이때 모든 계수가 0이면 벡터 v1...vnv_1...v_n은 선형 독립(linearly independent)하다고 하고, 만약 a1...ana_1...a_n중 하나라도 0이 아닌 경우 벡터 v1...vnv_1...v_n은 선형 종속(linearly dependent)이라고 합니다.

두번째 확인하는 과정에서 예제와 함께 다뤄보도록 하겠습니다.

다음 글에서는 기저(basis)와 랭크(Rank)에 대해서 포스팅하도록 하겠습니다.

profile
정진.

0개의 댓글