from tensorflow import keras
(train_input, train_target), (test_input, test_target) = keras.datasets.fashion_mnist.load_data()
from sklearn.model_selection import train_test_split
train_scaled = train_input / 255.0
train_scaled, val_scaled, train_target, val_target = train_test_split(
train_scaled, train_target, test_size=0.2, random_state=42
)
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=(28, 28)))
model.add(keras.layers.Dense(100, activation='relu'))
model.add(keras.layers.Dense(10, activation='softmax'))
model.summary()
model.compile(loss='sparse_categorical_crossentropy', metrics='accuracy')
model.fit(train_scaled, train_target, epochs=5)
model.evaluate(val_scaled, val_target)
[0.3633687198162079, 0.8764166831970215]
model.compile(optimizer='sgd' ,loss='sparse_categorical_crossentropy', metrics='accuracy')
model.fit(train_scaled, train_target, epochs=5)
model.evaluate(val_scaled, val_target)
model.compile(optimizer='adam' ,loss='sparse_categorical_crossentropy', metrics='accuracy')
model.fit(train_scaled, train_target, epochs=5)
model.evaluate(val_scaled, val_target)