1.3 Vector Equations

CharliePark·2020년 8월 22일
0

TIL

목록 보기
4/67

조범희 선생님의 선형대수학개론 강의를 듣고 공부하며 정리한 내용입니다.
정말 좋은 강의힙니다. 강추합니다. 링크

Vectors in R2\mathbb{R}^2

R2\mathbb{R}^2 = real space (실수 2차원 공간)

u=u=[31]\bold{u} = \vec{u} = \begin{bmatrix}3\\-1\end{bmatrix} v=v=[0.30.1]\bold{v} = \vec{v} = \begin{bmatrix}0.3\\0.1\end{bmatrix} w=w=[w1w2]\bold{w} = \vec{w} = \begin{bmatrix}w_1\\w_2\end{bmatrix}

 

Vector Summation

u+v=[31]+[0.30.1]=[3.30.9]\bold{u} + \bold{v} = \begin{bmatrix}3\\-1\end{bmatrix} +\begin{bmatrix}0.3\\0.1\end{bmatrix} = \begin{bmatrix}3.3\\-0.9\end{bmatrix}

 

Scalar multiplication

c=5, u=[31]  cu=5[31]=[535(1)]=[155]c = 5,\ \bold{u} = \begin{bmatrix}3\\-1\end{bmatrix}\ \ c * u = 5\begin{bmatrix}3\\-1\end{bmatrix} = \begin{bmatrix}5*3\\5*(-1)\end{bmatrix} = \begin{bmatrix}15\\-5\end{bmatrix}

 

Geometric Description of R2\mathbb{R}^2

u=[22], v=[61], u+v=[43]\bold{u} = \begin{bmatrix}2\\2\end{bmatrix},\ \bold{v} = \begin{bmatrix}-6\\1\end{bmatrix},\ \bold{u+v} = \begin{bmatrix}-4\\3\end{bmatrix}

u=[31], 2u, 23u\bold{u} = \begin{bmatrix}3\\-1\end{bmatrix},\ 2\bold{u},\ -\dfrac{2}{3}\bold{u}

 

어떤 vector u 에 임의의 scalar 값을 곱하면, 그 vector cu 는 vector u 와 동일선상에 있게 된다.

따라서, 이때의 c를 실수 전체로 가정하면, vector cu 가 그리는 발자취는 직선과 같게 된다.

이를 set of all multiple of u 이라고 한다.

 

Vectors in R3\mathbb{R}^3

a=[154]\bold{a} = \begin{bmatrix}1\\5\\4\end{bmatrix}

 

Vectors in Rn\mathbb{R}^n

u=[u1u2un]=(u1,u2,,un)\bold{u} = \begin{bmatrix} u_1\\u_2\\\vdots\\u_n \end{bmatrix} = (u_1, u_2, \cdots, u_n)

 

Algebraic properties of Rn\mathbb{R}^n

uvwin  Rn\bold{u}\quad \bold{v}\quad \bold{w}\quad in\ \ \mathbb{R}^n

cdis scalarc\quad d\quad is\ scalar

properties

i)u+v=v+ui)\quad \bold{u}+\bold{v} = \bold{v} + \bold{u}

ii)(u+v)+w=u+(v+w)ii)\quad (\bold{u}+\bold{v}) + \bold{w} = \bold{u} + (\bold{v} + \bold{w})

iii)u+0=0+u=u,(0=0)iii)\quad \bold{u}+\bold{0} = \bold{0} + \bold{u} = \bold{u} \quad ,(\bold{0} = \vec{0})

iv)u+(u)=u+u=0,(0=0)iv)\quad \bold{u}+(-\bold{u}) = -\bold{u} + \bold{u} = \bold{0} \quad ,(\bold{0} = \vec{0})

v)c(u+v)=cu+cvv)\quad c(\bold{u}+\bold{v}) = c\bold{u}+c\bold{v}

vi)(c+d)u=cu+duvi)\quad (c+d)\bold{u} = c\bold{u}+d\bold{u}

vii)c(du)=(cd)uvii)\quad c(d\bold{u}) = (cd)\bold{u}

viii)1u=uviii)\quad 1\bold{u} = \bold{u}

 


Linear Combinations

v1, v2, , vpin  Rn\bold{v_1},\ \bold{v_2},\ \cdots,\ \bold{v_p}\quad in\ \ \mathbb{R}^n

c1, c2, , cpis scalarc_1,\ c_2,\ \cdots,\ c_p\quad is\ scalar

y=c1v1+c2v2++cpvpy = c_1\bold{v_1} + c_2\bold{v_2} +\cdots+c_p\bold{v_p}

yy is linear combination of v1, v2, , vp\bold{v_1},\ \bold{v_2},\ \cdots,\ \bold{v_p} with weights c1, c2, , cpc_1,\ c_2,\ \cdots,\ c_p

 

Example 1. can b be generated as a linear combination of a1 and a2 ?

a1=[125]\bold{a_1} = \begin{bmatrix} 1\\-2\\-5 \end{bmatrix}

a2=[256]\bold{a_2} = \begin{bmatrix} 2\\5\\6 \end{bmatrix}

b=[743]\bold{b} = \begin{bmatrix} 7\\4\\-3 \end{bmatrix}

 
Solution.

x1a1+x2a2=bx_1\bold{a_1} + x_2\bold{a_2} = \bold{b}

 
x1[125]+x2[256]=[x1+2x22x1+5x25x1+6x2]=[743]x_1\begin{bmatrix} 1\\-2\\-5 \end{bmatrix} + x_2\begin{bmatrix} 2\\5\\6 \end{bmatrix} = \begin{bmatrix} x_1+2x_2\\-2x_1+5x_ 2\\-5x_1+6x_2 \end{bmatrix} = \begin{bmatrix} 7\\4\\-3 \end{bmatrix}

 
[127254563][127091801632][12701201632][127012000][103012000]\begin{bmatrix} 1 & 2 & 7\\-2 & 5 & 4\\-5 & 6 & -3 \end{bmatrix} \sim\begin{bmatrix} 1 & 2 & 7\\0 & 9 & 18\\0 & 16 & 32 \end{bmatrix} \sim\begin{bmatrix} 1 & 2 & 7\\0 & 1 & 2\\0 & 16 & 32 \end{bmatrix} \sim\begin{bmatrix} 1 & 2 & 7\\0 & 1 & 2\\0 & 0 & 0 \end{bmatrix} \sim\begin{bmatrix} 1 & 0 & 3\\0 & 1 & 2\\0 & 0 & 0 \end{bmatrix}

 
{x1=3x1=2\begin{cases} x_1 = 3\\ x_1 = 2 \end{cases}

 

can b be generated as a linear combination of a1 and a2 ?

 

= Does the follwing augmented matrix have a solution?

[a1a2b]\begin{bmatrix} \bold{a_1}\quad \bold{a_2}\quad \bold{b}\end{bmatrix}

 

so,

A vector equation

x1a1+x2a2++xnan=bx_1\bold{a_1} + x_2\bold{a_2} + \cdots + x_n\bold{a_n} = \bold{b}

 

has the same solution set as the linear system whose augmented matrix is

[a1 a2  an b]\begin{bmatrix} \bold{a_1}\ \bold{a_2}\ \cdots\ \bold{a_n}\ \bold{b}\end{bmatrix}

 

Span {v1,,vp}\begin{Bmatrix}\bold{v_1}, & \cdots, & \bold{v_p}\end{Bmatrix}

 
is the collection of all vectors that can be written in the form

c1v1+c2v2++cpvpc_1\bold{v_1} + c_2\bold{v_2} +\cdots+c_p\bold{v_p}

 

Is a vector b in span {v1,,vp}\begin{Bmatrix} \bold{v_1}, & \cdots, & \bold{v_p} \end{Bmatrix} ?

 

= Does the follwing vector equation have a solution?

x1v1+x2v2++xnvp=bx_1\bold{v_1} + x_2\bold{v_2} + \cdots + x_n\bold{v_p} = \bold{b}

 

= Does the follwing augmented matrix have a solution?

[v1vpb]\begin{bmatrix} \bold{v_1}\quad \cdots\quad \bold{v_p}\quad \bold{b}\end{bmatrix}

 

따라서, 'Is a vector b in span {v1,,vp}\begin{Bmatrix} \bold{v_1}, & \cdots, & \bold{v_p} \end{Bmatrix} ?' 꼴로 질문이 많이 주어진다

 


Geometric descriptions of Span {v}\begin{Bmatrix}\bold{v}\end{Bmatrix} and Span {u,v}\begin{Bmatrix}\bold{u}, & \bold{v}\end{Bmatrix} in R3\mathbb{R}^3

(uv는 scalar multiplication 으로 표현되지 않는 서로 다른 vector 이다)

span을 이용해서 표현하면 공간에서의 직선과 평면을 간단하게 표현할 수 있다.

 

Example 2.

a1=[123]\bold{a_1} = \begin{bmatrix} 1\\-2\\3 \end{bmatrix} a2=[5133]\bold{a_2} = \begin{bmatrix} 5\\-13\\3 \end{bmatrix} b=[381]\bold{b} = \begin{bmatrix} -3\\8\\1 \end{bmatrix}

 

Solution.

[1532138331][15303201810][153032002]\begin{bmatrix} 1 & 5 & -3\\-2 & -13 & 8\\3 & 3 & 1 \end{bmatrix} \sim\begin{bmatrix} 1 & 5 & -3\\0 & -3 & 2\\0 & -18 & 10 \end{bmatrix} \sim\begin{bmatrix} 1 & 5 & -3\\0 & -3 & 2\\0 & 0 & -2 \end{bmatrix}

by Theorem 2 (Existence and Uniqueness Theorem), this linear system has no solution (inconsistent)

0개의 댓글