Light Gaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS

chaenyangยท2024๋…„ 8์›” 6์ผ
0

3D

๋ชฉ๋ก ๋ณด๊ธฐ
2/9
post-thumbnail

๐Ÿ“Œ: https://arxiv.org/abs/2311.17245
methods ์œ„์ฃผ๋กœ ๋ฆฌ๋ทฐ

Abstract

LightGaussian์€ 3D Gaussian Splatting์˜ ์ €์žฅ ๊ณต๊ฐ„ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฐœ๋ฐœ๋œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์ด๋‹ค.

  • ๋ถˆํ•„์š”ํ•œ ๊ฐ€์šฐ์‹œ์•ˆ ์ œ๊ฑฐ
  • ํšจ์œจ์ ์ธ ํ˜•ํƒœ๋กœ ์ „ํ™˜ํ•ด์„œ ์žฅ๋ฉด ์žฌ๊ตฌ์„ฑ์— ๊ธฐ์—ฌํ•˜์ง€ ์•Š๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ์ค„์ž„
    • ๊ฐ€์šฐ์‹œ์•ˆ ๋ฒกํ„ฐ ์–‘์žํ™”๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋” ๋‚ฎ์€ ๋น„ํŠธ ํญ์œผ๋กœ ์ €์žฅ
    • FPS ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œ์ผœ ๋ณต์žกํ•œ ๋ฐ์ดํ„ฐ์…‹์—์„œ์˜ ์„ฑ๋Šฅ ๊ทน๋Œ€ํ™”

LightGaussian์€ ํ‰๊ท  15๋ฐฐ ์ด์ƒ์˜ ์••์ถ•๋ฅ ์„ ๋‹ฌ์„ฑํ–ˆ๊ณ , ์‹œ๊ฐ์  ํšจ๊ณผ๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ๋” ๋‚ฎ์€ ์ €์žฅ ๊ณต๊ฐ„ ์„ ์‚ฌ์šฉํ•œ๋‹ค.

Methods

overview of LightGaussian

3DGS ๋ชจ๋ธ์€ multi-view ์ด๋ฏธ์ง€๋กœ ํ›ˆ๋ จ๋˜๊ณ , SfM point clouds์—์„œ ์ดˆ๊ธฐํ™”๋œ๋‹ค. ํฌ์†Œ ํฌ์ธํŠธ๋ฅผ ์ˆ˜๋ฐฑ๋งŒ ๊ฐœ์˜ ๊ฐ€์šฐ์‹œ์•ˆ์œผ๋กœ ํ™•์žฅํ•ด์„œ ์žฅ๋ฉด์ด ์ž˜ ํ‘œํ˜„๋œ๋‹ค.

Gaussian Prune๊ณผ Recovery ์‚ฌ์šฉํ•ด์„œ ๊ฐ€์šฐ์‹œ์•ˆ ์ˆ˜๋ฅผ ์ค„์ด๊ณ , SH Distillation์„ ์‚ฌ์šฉํ•˜์—ฌ ์ค‘๋ณต SH๋ฅผ ์ œ๊ฑฐํ•˜๊ณ , ์ค‘์š”ํ•œ ์กฐ๋ช… ์ •๋ณด๋Š” ๋ณด์กดํ•œ๋‹ค. Vector Quantization์€ ์ฝ”๋“œ๋ถ ์ดˆ๊ธฐํ™” ๋ฐ ํ• ๋‹น์„ ํฌํ•จํ•˜์—ฌ ๋ชจ๋ธ ๋Œ€์—ญํญ์„ ์ค„์ด๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค.

LightGaussian์€ ๋จผ์ € ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๊ฐ ๊ฐ€์šฐ์‹œ์•ˆ์˜ ์ „์—ญ ์ค‘์š”๋„๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ์ค‘์š”๋„๊ฐ€ ๋‚ฎ์€ ๊ฐ€์šฐ์‹œ์•ˆ์„ ์ œ๊ฑฐํ•œ๋‹ค. ํ•ฉ์„ฑ๋œ ๊ฐ€์ƒ ๋ทฐ๋ฅผ ์‚ฌ์šฉํ•œ ์ฆ๋ฅ˜๊ฐ€ ๋„์ž…๋˜์–ด SH๋ฅผ ์ปดํŒฉํŠธํ•œ ํ˜•์‹์œผ๋กœ ์ „ํ™˜ํ•œ๋‹ค. Vector Quantization์€ ๋” ๋‚ฎ์€ ๋น„ํŠธ ํญ์—์„œ ๊ฐ€์šฐ์‹œ์•ˆ์„ ์ €์žฅํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค.

3.1. Background: 3D Gaussian Splatting

G(X)=eโˆ’12XTฮฃโˆ’1X,ฮฃ=RSSTRTG(\mathbf{X}) = e^{-\frac{1}{2} \mathbf{X}^T \Sigma^{-1} \mathbf{X}}, \quad \Sigma = \mathbf{R} \mathbf{S} \mathbf{S}^T \mathbf{R}^T

3DGS๋Š” ๊ฐ€์šฐ์‹œ์•ˆ์„ ์‚ฌ์šฉํ•˜์—ฌ ์žฅ๋ฉด์„ ๋ชจ๋ธ๋งํ•˜๋Š” explicit point ๊ธฐ๋ฐ˜ 3D ์žฅ๋ฉด ํ‘œํ˜„์ด๋‹ค. SfM์œผ๋กœ ์ƒ์„ฑ๋œ sparse point cloud์—์„œ ์ดˆ๊ธฐํ™”๋˜๋ฉฐ, ๊ฐ€์šฐ์‹œ์•ˆ ๋ฐ€๋„ ์ฆ๊ฐ€๋ฅผ ์ ์šฉํ•ด์„œ ์ž‘์€ ๊ทœ๋ชจ์˜ geometry๋ฅผ ๋ถˆ์ถฉ๋ถ„ํ•˜๊ฒŒ ๋‹ค๋ฃจ๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ์ˆ˜๋ฅผ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค.

๊ฐ ๊ฐ€์šฐ์‹œ์•ˆ์€ ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ ฮฃ์™€ ์ค‘์‹ฌ์  X(๊ฐ€์šฐ์‹œ์•ˆ์˜ ํ‰๊ท ๊ฐ’)์„ ๊ฐ–๋Š”๋‹ค. ฮฃ๋Š” ๋ฏธ๋ถ„ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ์Šค์ผ€์ผ๋ง ํ–‰๋ ฌ S์™€ ํšŒ์ „ ํ–‰๋ ฌ R๋กœ ๋ถ„ํ•ด๋  ์ˆ˜ ์žˆ๋‹ค.

๋ณต์žกํ•œ ๋ฐฉํ–ฅ์„ฑ์€ ๊ตฌ๋ฉด์กฐํ™”(SH)๋กœ ๋ชจ๋ธ๋ง๋œ๋‹ค. ์ฐจ์ˆ˜ D๋Š” SH์˜ ๋ณต์žก์„ฑ์„ ๊ฒฐ์ •ํ•˜๋Š”๋ฐ, ์ฐจ์ˆ˜๊ฐ€ ๋†’์„์ˆ˜๋ก ์„ธ๋ฐ€ํ•˜๊ฒŒ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ๊ณ„์‚ฐ๊ณผ ์ €์žฅ ๋ถ€ํ•˜๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค.

Splatting์œผ๋กœ 3D ๊ฐ€์šฐ์‹œ์•ˆ์—์„œ 2D ์ด๋ฏธ์ง€๋ฅผ renderingํ•œ๋‹ค.


(opacity๋Š” ํˆฌ๋ช…๋„, PSNR์€ ํ”ผํฌ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ๋น„)

  • ์œ„ ์ด๋ฏธ์ง€(PSNR: 27.2)
    • 3DGS์œผ๋กœ ๋ Œ๋”๋ง๋œ ์ด๋ฏธ์ง€, ๋†’์€ PSNR
  • ์•„๋ž˜ ์ด๋ฏธ์ง€(PSNR: 25.3)
    • ๋ถˆํˆฌ๋ช…๋„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ค‘์š”ํ•˜์ง€ ์•Š์€ ๊ฐ€์šฐ์‹œ์•ˆ ์ œ๊ฑฐํ•œ ํ›„ ๋ Œ๋”๋ง
    • PSNR ๋‚ฎ์•„์ง, ๋””ํ…Œ์ผ ๊ฐ์†Œ

Zero-shot ๋ถˆํˆฌ๋ช…๋„ ๊ธฐ๋ฐ˜ Pruning

  • ๋งŽ์€ ๊ฐ€์šฐ์‹œ์•ˆ์ด ๋‚ฎ์€ ๋ถˆํˆฌ๋ช…๋„ ๊ฐ’์„ ๊ฐ€์ง„๋‹ค
  • ๋ถˆํˆฌ๋ช…๋„๋ฅผ pruning์˜ ์ง€ํ‘œ๋กœ ๋‹จ์ˆœํžˆ ์‚ฌ์šฉํ•˜๋ฉด ์ค‘์š”ํ•˜์ง€ ์•Š์€ ๊ฐ€์šฐ์‹œ์•ˆ ์ œ๊ฑฐํ•˜๊ฒŒ ๋œ๋‹ค
    • ๊ทผ๋ฐ ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ Œ๋”๋ง๋œ ์ด๋ฏธ์ง€์˜ ์„ธ๋ถ€ ์‚ฌํ•ญ์ด ์†์‹ค๋ผ์„œ PSNR ๊ฐ’ ๋‚ฎ์•„์ง„๋‹ค

3.2. Gaussian Pruning & Recovery

Gaussian densification (๊ฐ€์šฐ์‹œ์•ˆ ๋ฐ€๋„ ์ฆ๊ฐ€):

  • ์ดˆ๊ธฐ SfM ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ๋ฅผ ๋ณต์ œํ•˜๊ณ  ๋ถ„ํ• ํ•˜์—ฌ ๋ถˆ์ถฉ๋ถ„ํ•œ coverage ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค.
  • ์†Œ๊ทœ๋ชจ geometry์™€ ์„ธ๋ถ€์ ์ธ ์žฅ๋ฉด์„ ๋” ์ž˜ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๋‹ค
  • ์žฌ๊ตฌ์„ฑ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค.

Problem:

  • ์ตœ์ ํ™” ํ›„ ๊ฐ€์šฐ์‹œ์•ˆ์˜ ์ˆ˜๊ฐ€ ์ˆ˜์ฒœ๊ฐœ์—์„œ ์ˆ˜๋ฐฑ๋งŒ๊ฐœ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค.
    • ํฐ ์ €์žฅ ๊ณต๊ฐ„ ์š”๊ตฌํ•˜๊ฒŒ ๋œ๋‹ค

Solution: pruning

๋ถˆํ•„์š”ํ•œ ๊ฐ€์šฐ์‹œ์•ˆ์„ ์ œ๊ฑฐํ•˜๋ฉด์„œ๋„ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•ด์•ผ ํ•œ๋‹ค. ์ค‘๋ณต ๊ฐ€์šฐ์‹œ์•ˆ์„ ์‹๋ณ„ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋‹จ์ˆœํžˆ ๋ถˆํˆฌ๋ช…๋„์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ pruning ํ•˜๋ฉด ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋  ์ˆ˜ ์žˆ๋‹ค.

Global Significance Calculation

๊ฐ€์šฐ์‹œ์•ˆ์˜ ์ค‘์š”์„ฑ์„ ํ‰๊ฐ€ํ•  ๋•Œ ๋ถˆํˆฌ๋ช…๋„์— ์˜์กดํ•˜๋Š” ๋Œ€์‹  3D ๊ฐ€์šฐ์‹œ์•ˆ์ด view frustum ๋‚ด์—์„œ ํ‰๊ฐ€๋˜๊ณ , rendering์„ ์œ„ํ•ด ์นด๋ฉ”๋ผ view point๋กœ ํˆฌ์˜๋œ๋‹ค.


Global significant score (GS)

๊ฐ€์šฐ์‹œ์•ˆ ๋ถ€ํ”ผ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋ฐฐ๊ฒฝ ๊ฐ€์šฐ์‹œ์•ˆ์˜ ์ค‘์š”์„ฑ์„ ๊ณผ์žฅํ•ด์„œ, ๋ณต์žกํ•œ geometry๋ฅผ ๋ชจ๋ธ๋งํ•  ๋•Œ ์ค‘์š”ํ•œ ๊ฐ€์šฐ์‹œ์•ˆ์„ ๋งŽ์ด ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋” adaptive ๋ฐฉ๋ฒ•์œผ๋กœ ๋ถ€ํ”ผ๋ฅผ ์ธก์ •ํ•œ๋‹ค.

ฮณ(ฮฃ)=(Vnorm)ฮฒ,\gamma(\Sigma) = (V_{\text{norm}})^\beta,
Vnorm=minโก(maxโก(V(ฮฃ)Vmax90,0),1).V_{\text{norm}} = \min \left( \max \left( \frac{V(\Sigma)}{V_{\text{max90}}}, 0 \right), 1 \right).

adaptive way (ฮฒ=3)

๊ฐ€์šฐ์‹œ์•ˆ ๋ถ€ํ”ผ๋Š” ์ƒ์œ„ 90%์˜ ๊ฐ€์žฅ ํฐ ๊ฐ€์šฐ์‹œ์•ˆ์— ์˜ํ•ด ์ •๊ทœํ™”๋˜๊ณ , ๋ฒ”์œ„๋Š” 0์—์„œ 1 ์‚ฌ์ด๋กœ ์œ ์ง€ ๋ผ์„œ 3DGS์˜ ๊ณผ๋„ํ•œ ์ค‘์š”๋„ ํ• ๋‹น์„ ๋ฐฉ์ง€ํ•œ๋‹ค.

Gaussian Co-adaptation

: pruning ํ›„ ๋‚จ์€ ๊ฐ€์šฐ์‹œ์•ˆ๋“ค์„ ์ตœ์ ํ™”ํ•˜์—ฌ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•

๊ณ„์‚ฐ๋œ GS(global ์ค‘์š”๋„ ์ ์ˆ˜)๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ชจ๋“  ๊ฐ€์šฐ์‹œ์•ˆ์— ์ˆœ์œ„๋ฅผ ๋งค๊ธฐ๋Š”๋ฐ. ์ˆœ์œ„๋Š” ์ ์ˆ˜๊ฐ€ ๋‚ฎ์€ ๊ฐ€์šฐ์‹œ์•ˆ์„ pruningํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ค€์ด๋‹ค. (= ์ ์ˆ˜๊ฐ€ ๋‚ฎ์€ ๊ฐ€์šฐ์‹œ์•ˆ์€ ๋ชจ๋ธ ์„ฑ๋Šฅ์— ๋œ ๊ธฐ์—ฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— pruning ๋Œ€์ƒ์ด๋‹ค)

pruning ํ›„ ๋‚จ์€ ๊ฐ€์šฐ์‹œ์•ˆ๋“ค์€ ์ถ”๊ฐ€์ ์ธ densification ์—†์ด ์ตœ์ ํ™”๋œ๋‹ค. co-adaptation์€ ๊ฐ ๊ฐ€์šฐ์‹œ์•ˆ์ด ์ตœ์ ์˜ ์ƒํƒœ๋กœ ์กฐ์ •๋˜์–ด ์ „์ฒด์ ์ธ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค.

Photometric loss๋Š” ์ด๋ฏธ์ง€์˜ ํ”ฝ์…€ ๊ฐ’ ์ฐจ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์†์‹ค์„ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์›๋ž˜์˜ ํ›ˆ๋ จ view๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ 5000๋ฒˆ ๋ฐ˜๋ณตํ•ด์„œ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๋„๋ก ํ•œ๋‹ค.

3.3. Distilling into Compact SHs

์••์ถ•๋˜์ง€ ์•Š์€ Gaussian Splat ๋ฐ์ดํ„ฐ๋Š” ์ƒ๋‹นํ•œ ์–‘์˜ ๊ตฌ๋ฉด ์กฐํ™”(SH) ๊ณ„์ˆ˜๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. SH ์ˆ˜๋ฅผ ์ค„์ด๋ฉด ๊ณต๊ฐ„์„ ์ ˆ์•ฝํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ํ‘œ๋ฉด ๊ด‘ํƒ์ด ํฌ๊ฒŒ ๊ฐ์†Œํ•˜๊ณ , ๋ทฐ ํฌ์ธํŠธ๊ฐ€ ๋ณ€๊ฒฝ๋  ๋•Œ ๋ฐ˜์‚ฌ ๋ณ€ํ™”์˜ ๋ถ„์‚ฐ(variance in specular reflections)์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค.

๋ชจ๋ธ์˜ ํฌ๊ธฐ์™€ ์žฅ๋ฉด ๋ชจ๋ธ๋ง ํ’ˆ์งˆ ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ๊ณ ์ฐจ์ˆ˜ SH์—์„œ ์ €์ฐจ์ˆ˜ SH๋กœ ์ง€์‹์„ ์ „์ดํ•˜๋Š” distillation process์„ ์ œ์•ˆํ•˜์˜€๋‹ค. (์ฆ๋ฅ˜ ๊ณผ์ •: teacher model โ†’ student model ์ง€์‹์„ ์ „์ด)

Ldistill=1HWโˆ‘i=1HWโˆฅCteacher(ri)โˆ’Cstudent(ri)โˆฅ22L_{\text{distill}} = \frac{1}{HW} \sum_{i=1}^{HW} \| C_{\text{teacher}}(r_i) - C_{\text{student}}(r_i) \|_2^2

์ฆ๋ฅ˜ ์†์‹ค ํ•จ์ˆ˜ (H: ์ด๋ฏธ์ง€ ๋†’์ด, W: ์ด๋ฏธ์ง€ ๋„ˆ๋น„, C: ํ”ฝ์…€ ๊ฐ•๋„)
๋‘ ๋ชจ๋ธ ๊ฐ„์˜ ์˜ˆ์ธก๋œ ํ”ฝ์…€ ๊ฐ•๋„ ์ฐจ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ •์˜

Synthesize Pseudo Views

๋ทฐํฌ์ธํŠธ๊ฐ€ ๋ณ€๊ฒฝ๋˜๋ฉด ๋ฌผ์ฒด ํ‘œ๋ฉด์—์„œ ๋ฐ˜์‚ฌ๋˜๋Š” ๊ด‘์„ ์ด ๋‹ฌ๋ผ์ง„๋‹ค. ๋ทฐํฌ์ธํŠธ๋ฅผ ์ถ”๊ฐ€์ ์œผ๋กœ ์ƒ˜ํ”Œ๋งํ•˜์—ฌ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ์ƒˆ๋กœ์šด ์‹œ์ ์„ ๋„์ž…ํ•˜๋ฉด ๋ฐ˜์‚ฌ ํŠน์„ฑ์„ ๋” ์ž˜ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ƒˆ๋กœ์šด ์นด๋ฉ”๋ผ ์œ„์น˜๋ฅผ ์ƒ˜ํ”Œ๋งํ•˜๊ณ , ์ผ๊ด€๋œ ์นด๋ฉ”๋ผ ๋ทฐ ๋ฐฉํ–ฅ์„ ์œ ์ง€ํ•œ๋‹ค.

tpseudo=ttrain+N(0,ฯƒ2)t_{\text{pseudo}} = t_{\text{train}} + \mathcal{N}(0, \sigma^2)

์ƒˆ๋กœ ์ƒ์„ฑ ๋œ ์˜์‚ฌ ์นด๋ฉ”๋ผ ์œ„์น˜ = ํ›ˆ๋ จ ์นด๋ฉ”๋ผ ์œ„์น˜ + N

N์€ ํ‰๊ท ์ด 0์ด๊ณ  ๋ถ„์‚ฐ์ด ฯƒ^2์ธ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ , ์ด๋Š” ์ƒˆ๋กœ์šด ์œ„์น˜๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์›๋ž˜ ์œ„์น˜์— ๋”ํ•ด์ง„๋‹ค.

3.4. Gaussian Attributes Vector Quantization

๋ฒกํ„ฐ ์–‘์žํ™”๋Š” voxel์„ ์••์ถ• ์ฝ”๋“œ๋ถ์œผ๋กœ ํด๋Ÿฌ์Šคํ„ฐ๋งํ•œ๋‹ค. ๋†’์€ ์••์ถ•๋ฅ ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ๊ฐ€์šฐ์‹œ์•ˆ ์†์„ฑ์„ ์–‘์žํ™”ํ•˜๋Š” ๊ฒƒ์€ ์  ๊ธฐ๋ฐ˜ ํ‘œํ˜„์˜ non-Euclidean ์„ฑ์งˆ ๋•Œ๋ฌธ์— ์–ด๋ ต๋‹ค. ํŠนํžˆ ์œ„์น˜, ํšŒ์ „, ์Šค์ผ€์ผ๊ณผ ๊ฐ™์€ ์†์„ฑ์— ์–‘์žํ™”๋ฅผ ์ ์šฉํ•˜๋ฉด ์ •๋ฐ€๋„์™€ ์ •ํ™•๋„๊ฐ€ ์ €ํ•˜๋  ์ˆ˜ ์žˆ๋‹ค.

SH ๊ณ„์ˆ˜์— ๋ฒกํ„ฐ ์–‘์žํ™”๊ฐ€ ์ ์šฉ๋˜๋Š”๋ฐ, ์‚ฌ์ „ ๊ณ„์‚ฐ๋œ ์ค‘์š”๋„ ์ ์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ rendering ํ’ˆ์งˆ ์†์‹ค๊ณผ ์••์ถ•๋ฅ  ๊ฐ„์˜ ๊ท ํ˜•์„ ๋งž์ถ”๋Š” ๋ฐ ์ค‘์ ์„ ๋‘”๋‹ค. ๋ฒกํ„ฐ ์–‘์žํ™”๋ฅผ ์ ์šฉํ•  ๋•Œ, SH์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•˜์ง€ ์•Š์€ ์š”์†Œ๋“ค์„ ์„ ํƒ์ ์œผ๋กœ ์–‘์žํ™”ํ•œ๋‹ค. K ํ‰๊ท ์„ ํ†ตํ•ด C(์ฝ”๋“œ๋ถ)๋ฅผ ์ดˆ๊ธฐํ™”ํ•˜๊ณ , ๋ฐ˜๋ณต์ ์œผ๋กœ G(๊ฐ€์šฐ์‹œ์•ˆ ์ง‘ํ•ฉ)์˜ ๋ฐฐ์น˜๋ฅผ ์ƒ˜ํ”Œ๋งํ•˜์—ฌ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ๋กœ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์ฝ”๋“œ์— ์—ฐ๊ฒฐํ•œ๋‹ค. ์ด๋™ ํ‰๊ท  ๊ทœ์น™์„ ํ†ตํ•ด ๊ฐ ck๋ฅผ ์—…๋ฐ์ดํŠธํ•œ๋‹ค.

ck=ฮปdโ‹…ck+(1โˆ’ฮปd)โ‹…1Tkโˆ‘gjโˆˆR(ck)GSjโ‹…gj,Tk=โˆ‘gjโˆˆR(ck)GSjc_k = \lambda_d \cdot c_k + (1 - \lambda_d) \cdot \frac{1}{T_k} \sum_{g_j \in \mathcal{R}(c_k)} \text{GS}_j \cdot g_j, \quad T_k = \sum_{g_j \in \mathcal{R}(c_k)} \text{GS}_j

ฮปd = 0.8์€ ๊ฐ‘์‡ ๊ฐ’์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.
5000๋ฒˆ ๋™์•ˆ ๋ฐ˜๋ณตํ•˜๋ฉฐ ์ฝ”๋“œ ๋ถ€๋ถ„์„ fine tuning ํ•˜๋ฉฐ, ๊ฐ€์šฐ์‹œ์•ˆ-์ฝ”๋“œ๋ถ ๋งคํ•‘์„ ๊ณ ์ •ํ•œ๋‹ค. ํ›ˆ๋ จ ๋ทฐ์—์„œ ์ถ”๊ฐ€์ ์ธ ํด๋ก ์ด๋‚˜ ๋ถ„ํ•  ์ž‘์—… ์—†์ด photometric loss๋ฅผ ์ตœ์†Œํ™”ํ•œ๋‹ค.

profile
์ž‰๊ณต์ง€๋Šฅ

0๊ฐœ์˜ ๋Œ“๊ธ€