[밑바닥부터 시작하는 딥러닝] #19 합성곱 신경망 구현

Clay Ryu's sound lab·2022년 4월 7일
0

Note for 2022

목록 보기
33/47

SimpleConvNet

코드구현

class SimpleConvNet:
    '''
    conv - relu - pool - affine - relu - affine - softmax
    '''
    
    def __init__(self, input_dim=(1,28,28),
                conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},
                hidden_size=100, output_size=10, weight_init_std=0.01):
        filter_num = conv_param['filter_num']
        filter_size = conv_param['filter_size']
        filter_pad = conv_param['pad']
        filter_stride = conv_param['stride']
        input_size = input_dim[1]
        conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride +1
        # affine층에 넣어주기 위해서 flatten한 크기
        pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2))
        
        # 가중치 초기화
        # Conv, Affine, Affine에서 사용된다.
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(filter_num, input_dim[0], filter_size, filter_size)
        self.params['b1'] = np.zeros(filter_num)
        self.params['W2'] = weight_init_std * np.random.randn(pool_output_size, hidden_size)
        self.params['b2'] = np.zeros(hidden_size)
        self.params['W3'] = weight_init_std * np.random.randn(hidden_size, output_size)
        self.params['b3'] = np.zeros(output_size)
        
        # 계층 생성
        self.layers = OrderedDict()
        self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'], conv_param['stride'], conv_param['pad'])
        self.layers['Relu1'] = Relu()
        self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
        self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])
        
        self.last_layer = SoftmaxwithLoss()
        
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)
            
        return x
    
    def loss(self, x, t):
        y = self.predict(x)
        return self.last_layer.forward(y, t)
    
    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1:
            t = np.argmax(t, axis=1)
            
        acc = 0.0
        
        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i*batch_size : (i+1)*batch_size]
            tt = t[i*batch_size : (i+1)*batch_size]
            y = self.predict(tx)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt)
            
        return acc / x.shape[0]
    
    def numerical_gradient(self, x, t):
        # 수치미분
        
        loss_w = lambda w : self.loss(x, t)
        
        grads = {}
        for idx in (1, 2, 3):
            grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)])
            grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)])
        
        return grads
    
    def gradient(self, x, t):
        # 오차역전파법
        
        # forward
        self.loss(x, t)
        
        # backward
        dout = 1
        dout = self.last_layer.backward(dout)
        
        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)
            
        # 결과저장
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db
        grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db
        
        return grads
        
    def save_params(self, file_name='params.pkl'):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)
            
    def load_params(self, file_name='params.pkl'):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
            self.layers[key].W = self.params['W' + str(i+1)]
            self.layers[key].b = self.params['b' + str(i+1)]

학습

max_epochs = 20

network = SimpleConvNet(input_dim=(1, 28, 28), 
                        conv_param = {'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},
                       hidden_size=100, output_size=10, weight_init_std=0.01)

trainer = Trainer(network, x_train, t_train, x_test, t_test,
                epochs=max_epochs, mini_batch_size=100,
                optimizer='Adam', optimizer_param={'lr':0.001},
                evaluate_sample_num_per_epoch=1000)

trainer.train()
markers = {'train':'o', 'test':'s'}
x = np.arange(4)
plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2)
plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2)
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
plt.legend(loc='lower right')
plt.show()

추가 내용

https://youtu.be/iqtzKGI3evU
conv network를 통과한 이미지의 size를 다시금 체크해보기
학습한 network의 conv에서 필터가 찾아낸 이미지를 보는법

profile
chords & code // harmony with structure

0개의 댓글