Cardinality : Example

STATS·2023년 7월 18일
0

해석개론

목록 보기
3/4
post-thumbnail

Cardinality comparison of Even and N

We want to check if there bijective function exist such that f:{2nnN}NLemma) If there exist bijective function g such thatg:N{2nnN}, There also inverse of g exist, which is bijective function.Therefore if there exist such g, {2nnN}=NLet g:N{2nnN}, g(n)=2nI) Proof of Injectivityn1n2N2n12n2g(n1)g(n2), g is injective functionII) Proof of Surjectivity2n{2nnN},nN s.t g(n)=2ng is surjective functiong is bijective, by lemma, so cardinality of to set is equal.\text{We want to check if there bijective function exist such that } \\ f:\{2n \lvert n \in \N\} \rightarrow \N \\ {} \\ \text{Lemma) If there exist bijective function g such that}\\ g: \N \rightarrow \{2n \lvert n \in \N\}, \ \text{There also inverse of g exist, which is bijective function.}\\ \text{Therefore if there exist such g, } |\{2n | n \in \N\}\rvert = \lvert \N \rvert \\{}\\ \text{Let } g:\N \rightarrow \{2n \lvert n \in \N\}, \ g(n) = 2n \\ {} \\ \text{I) Proof of Injectivity} \\ {} \\ n_1 \neq n_2 \in \N \Rightarrow 2n_1 \neq 2n_2 \Rightarrow g(n_1) \neq g(n_2),\ \\ \therefore \text{g is injective function} \\ {} \\ \text{II) Proof of Surjectivity} \\ {} \\ \forall 2n \in \{2n \lvert n \in \N\} , \exist n \in \N\ s.t \ g(n) = 2n \\ \therefore \text{g is surjective function} \\ {} \\ \\ {} \\ \therefore \text{g is bijective, by lemma, so cardinality of to set is equal.}

Cardinality comparison of Z and N

f:ZN, f(z)={2z+1 (z0),2z (z<0)Bacause f is bijective function, Z=Nf: \Z \rightarrow \N, \ f(z) = \begin{cases} 2z+1 \ (z \ge 0),\\ -2z \ (z < 0) \end{cases} \\ {} \\ \text{Bacause f is bijective function, } \lvert \Z \rvert = \lvert \N \rvert

Cardinality comparison of Q and N

Lemma) N=Q+proof)N=N2 since there exist bijection of "Zigzag" from N to N squared.Also, There exist bijection f:N2Q+ such that: f(n1,n2)=n2n1N=N2, N2=Q+N=Q+Proof) since Q=Q+there bijection also exist from Qto N. Let each bijection:g:Q+N, h:QNThen we can make bijection k:QZ such that: k(x)={0 (x=0)g(x) (x>0),h(x) (x<0)Q=Z=NQ=NLemma) \ \lvert \N \rvert = \lvert Q^+ \rvert \\ {} \\ proof) \\ \lvert \N \rvert = \lvert \N^2 \rvert \ \text{since there exist bijection of "Zigzag" from N to N squared}. \\ \text{Also, There exist bijection } f: \N^2 \rightarrow Q^+ \text{ such that: } \\ f(n_1, n_2) = \frac{n_2}{n_1}\\ {} \\ \therefore \lvert \N \rvert = \lvert \N^2 \rvert, \ \lvert \N^2 \rvert = \lvert Q^+ \rvert \Rightarrow \lvert \N \rvert = \lvert Q^+ \rvert\\ {} \\ Proof) \ \text{since } \lvert Q^- \rvert = \lvert Q^+ \rvert \text{there bijection also exist from } Q^- \text{to N. Let each bijection:} \\ g:Q^+ \rightarrow \N, \ h: Q^- \rightarrow \N \\ {} \\ \text{Then we can make bijection } k: Q \rightarrow \Z \text{ such that: }\\ k(x) = \begin{cases} 0 \ (x=0) \\ g(x) \ (x > 0),\\ -h(x) \ (x < 0) \end{cases} \\ {} \\ \therefore \lvert Q \rvert = \lvert \Z \rvert = \lvert \N \rvert \Rightarrow \lvert Q \rvert = \lvert \N \rvert

1개의 댓글

comment-user-thumbnail
2023년 7월 18일

훌륭한 글이네요. 감사합니다.

답글 달기