[ML] 회귀 - 선형 회귀를 위한 데이터 변환

강주형·2022년 7월 17일
0
post-custom-banner

데이터 변환 개요

선형 회귀 모델은 일반적으로 Feature와 Target 간 선형 관계가 있다고 가정

선형 회귀 모델은 Feature와 Target의 분포가 정규분포인 것을 선호 (특히 Target)


변환설명
Target 변환Target은 정규 분포를 선호 -> Skew시에 주로 Log 변환
Feature 스케일링Standard/MinMax 이용
Feature 다항 특성 변환스케일링/정규화 이후 다시 다항 특성 적용하여 변환 (과적합 위험)
Feature Log 변환skew가 심한 Feature에 대해 log 변환 (주로 사용)

데이터 변환 실습

앞에서 한 보스톤 데이터 그대로 사용하자

from sklearn.model_selection import cross_val_score

# boston 데이타셋 로드
boston = load_boston()

# boston 데이타셋 DataFrame 변환 
bostonDF = pd.DataFrame(boston.data , columns = boston.feature_names)

# boston dataset의 target array는 주택 가격임. 이를 PRICE 컬럼으로 DataFrame에 추가함. 
bostonDF['PRICE'] = boston.target

y_target = bostonDF['PRICE']
X_data = bostonDF.drop(['PRICE'],axis=1,inplace=False)

Ridge Regression에 대해 다양한 데이터 변환을 적용 후 결과 확인하기
앞에서 만들었던 alpha값에 따라 CV 평균 RMSE와 회귀 계수를 구하는 get_linear_reg_eval 함수 사용

from sklearn.linear_model import Ridge, Lasso, ElasticNet
from sklearn.model_selection import cross_val_score

# alpha값에 따른 회귀 모델의 폴드 평균 RMSE를 출력하고 회귀 계수값들을 DataFrame으로 반환 
def get_linear_reg_eval(model_name, params=None, X_data_n=None, y_target_n=None, 
                        verbose=True, return_coeff=True):
    coeff_df = pd.DataFrame()
    if verbose : print('####### ', model_name , '#######')
    for param in params:
        if model_name =='Ridge': model = Ridge(alpha=param)
        elif model_name =='Lasso': model = Lasso(alpha=param)
        elif model_name =='ElasticNet': model = ElasticNet(alpha=param, l1_ratio=0.7)
        neg_mse_scores = cross_val_score(model, X_data_n, 
                                             y_target_n, scoring="neg_mean_squared_error", cv = 5)
        avg_rmse = np.mean(np.sqrt(-1 * neg_mse_scores))
        print('alpha {0}일 때 5 폴드 세트의 평균 RMSE: {1:.3f} '.format(param, avg_rmse))
        # cross_val_score는 evaluation metric만 반환하므로 모델을 다시 학습하여 회귀 계수 추출
        
        model.fit(X_data_n , y_target_n)
        if return_coeff:
            # alpha에 따른 피처별 회귀 계수를 Series로 변환하고 이를 DataFrame의 컬럼으로 추가. 
            coeff = pd.Series(data=model.coef_ , index=X_data_n.columns )
            colname='alpha:'+str(param)
            coeff_df[colname] = coeff
    
    return coeff_df

변환을 적용하는 get_scaled_data 만들기
Standard/MinMax/Log 변환 중 하나를 수행하고,
그 후 Polynomial 수행 여부를 결정함
method를 지정하지 않으면 input_data 그대로 다시 반환

from sklearn.preprocessing import StandardScaler, MinMaxScaler, PolynomialFeatures

# method는 표준 정규 분포 변환(Standard), 최대값/최소값 정규화(MinMax), 로그변환(Log) 결정
# p_degree는 다향식 특성을 추가할 때 적용. p_degree는 2이상 부여하지 않음. 
def get_scaled_data(method='None', p_degree=None, input_data=None):
    if method == 'Standard':
        scaled_data = StandardScaler().fit_transform(input_data)
    elif method == 'MinMax':
        scaled_data = MinMaxScaler().fit_transform(input_data)
    elif method == 'Log':
        scaled_data = np.log1p(input_data)
    else:
        scaled_data = input_data

    if p_degree != None:
        scaled_data = PolynomialFeatures(degree=p_degree, 
                                         include_bias=False).fit_transform(scaled_data)
    
    return scaled_data

scale_methods를 튜플 형태로 선언함
앞에는 변환 방법을 지정하고, 뒤에는 Polynomial degree를 설정
뒤를 None으로 하면 첫 번째 변환만 수행


변환 후 각 변환 유형과 alpha마다 CV의 평균 RMSE 출력

# Ridge의 alpha값을 다르게 적용하고 다양한 데이터 변환방법에 따른 RMSE 추출. 
alphas = [0.1, 1, 10, 100]
#변환 방법은 모두 6개, 원본 그대로, 표준정규분포, 표준정규분포+다항식 특성
# 최대/최소 정규화, 최대/최소 정규화+다항식 특성, 로그변환 
scale_methods=[(None, None), ('Standard', None), ('Standard', 2), 
               ('MinMax', None), ('MinMax', 2), ('Log', None)]
for scale_method in scale_methods:
    X_data_scaled = get_scaled_data(method=scale_method[0], p_degree=scale_method[1], 
                                    input_data=X_data)
    print('\n## 변환 유형:{0}, Polynomial Degree:{1}'.format(scale_method[0], scale_method[1]))
    get_linear_reg_eval('Ridge', params=alphas, X_data_n=X_data_scaled, 
                        y_target_n=y_target, verbose=False, return_coeff=False)
## 변환 유형:None, Polynomial Degree:None
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.788 
alpha 1일 때 5 폴드 세트의 평균 RMSE: 5.653 
alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.518 
alpha 100일 때 5 폴드 세트의 평균 RMSE: 5.330 

## 변환 유형:Standard, Polynomial Degree:None
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.826 
alpha 1일 때 5 폴드 세트의 평균 RMSE: 5.803 
alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.637 
alpha 100일 때 5 폴드 세트의 평균 RMSE: 5.421 

## 변환 유형:Standard, Polynomial Degree:2
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 8.827 
alpha 1일 때 5 폴드 세트의 평균 RMSE: 6.871 
alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.485 
alpha 100일 때 5 폴드 세트의 평균 RMSE: 4.634 

## 변환 유형:MinMax, Polynomial Degree:None
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.764 
alpha 1일 때 5 폴드 세트의 평균 RMSE: 5.465 
alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.754 
alpha 100일 때 5 폴드 세트의 평균 RMSE: 7.635 

## 변환 유형:MinMax, Polynomial Degree:2
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.298 
alpha 1일 때 5 폴드 세트의 평균 RMSE: 4.323 
alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.185 
alpha 100일 때 5 폴드 세트의 평균 RMSE: 6.538 

## 변환 유형:Log, Polynomial Degree:None
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 4.770 
alpha 1일 때 5 폴드 세트의 평균 RMSE: 4.676 
alpha 10일 때 5 폴드 세트의 평균 RMSE: 4.836 
alpha 100일 때 5 폴드 세트의 평균 RMSE: 6.241 

변환을 했다고 꼭 성능이 좋아지는 건 아닌 것이 확인됨
나중에 더 많은 데이터를 가진 예시로 수행해보자!

profile
Statistics & Data Science
post-custom-banner

0개의 댓글