Real-time instance segmentation에서 좋은 성능호환 가능한 capacity를 가진 architecture를 제안(한 부분이 다른 부분의 성능이나 용량에 제한을 받지 않도록 고려된 구조)large-kernel depth-wise convolutions로 구성된 basic building block (backbone과 neck모두 같은 basic building block을 씀)parameter-accuracy trade-off

a에서 inference speed 개선 (계산량이 줄어듦)1*1 point-wise convolution이 추가되어서) -> 이를 해결하기 위해a와 성능은 같으면서도, inference speed를 빠르게 할 수 있었다.
computation-accuracy trade-off를 개선하였다.label assignment strategies [19, 47, 70]
(binary label로 인해,) noisy하고 unstable하게 학습되는 것을 막습니다.Y_soft: IoU = soft label



cache length와 popping method에 의해 제어two-stage training strategy, first stage uses strong data augmentations, including Mosaic, MixUp, and random rotation and shear, second stage use weak data augmentations, such as random resizing and flipping.random rotation and shearing that cause misalignment between inputs and the transformed box annotations, To decouple the usage of data augmentation and loss functions, multi-level features. 각 instance마다 169 차원 벡터를 예측soft region prior in the dynamic label assignment를 계산 할 때mass center of the masks를 사용함.
https://infiniteabundance.mn.co/members/35641220
https://infiniteabundance.mn.co/posts/90004462
https://infiniteabundance.mn.co/posts/90004531
https://visiontrainstation.mn.co/members/35641262
https://visiontrainstation.mn.co/posts/90004581
https://visiontrainstation.mn.co/posts/mind-blowing-unheard-facts-about-bamboo-floors
https://womenindata.mn.co/members/35641326
https://pathwaycitychurch.mn.co/members/35641360
https://pathwaycitychurch.mn.co/posts/90004764
https://pathwaycitychurch.mn.co/posts/90004776
https://aisalon.mn.co/members/35641436
https://www.palistrong.org/members/35641496
https://authortunities-hub.mn.co/members/35641539
https://authortunities-hub.mn.co/posts/eco-friendly-flooring-why-bamboo-is-a-sustainable-choice
https://authortunities-hub.mn.co/posts/bamboo-flooring-thailand-supplier