[Linear Algebra] Dimension, Rank

Jason Lee·2022년 8월 30일
0

Linear Algebra

목록 보기
14/26
post-custom-banner

Dimension of Subspace

  • dimension of HH : number of vectors in any bases of subspace HH

Column Space of Matrix

  • Definition : the column space of a matrix A is the subspace spanned by the columns of A

e.g.

A=[111001]A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}

ColA=Span{[110],[101]}\textrm{Col} A = \textrm{Span}\begin{Bmatrix} \begin{bmatrix} 1\\ 1\\ 0\end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 1\end{bmatrix}\end{Bmatrix}

Matrix with Linearly Dependent Columns

e.g.

A=[112101011]A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}

ColA=Span{[110],[101],[211]}=Span{[110],[101]}\textrm{Col} A = \textrm{Span}\begin{Bmatrix} \begin{bmatrix} 1\\ 1\\ 0\end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 1\end{bmatrix}\end{Bmatrix} = \textrm{Span}\begin{Bmatrix} \begin{bmatrix} 1\\ 1\\ 0\end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 1\end{bmatrix}\end{Bmatrix}

Rank of Matrix

  • Definition : the rank of a matrix AA is dimension of the column space of AA
  • rankA=dim ColA\textrm{rank} A = \textrm{dim Col} A
profile
AI Researcher
post-custom-banner

0개의 댓글