[Linear Algebra] Linear Transformation

Jason Lee·2022년 8월 30일
0

Linear Algebra

목록 보기
15/26
post-custom-banner

Transformation

  • A transformation, function, or mapping TT maps an input xx to an output yy
    • T:xyT : x \mapsto y
  • Domain : set of all the possible values of xx
  • Co-domain : set of all the possible values of yy
  • Image : a mapped output yy, given xx
  • Range : set of all the output values mapped by each xx in the domain

Linear Transformation

  • Definition : a transformation (or mapping) TT is linear if
    • T(cu+dv)=cT(u)+dT(v)T(c \textbf{u} + d \textbf{v}) = cT(\textbf{u}) + dT(\textbf{v}) for all u,v\textbf{u}, \textbf{v} in the domain of TT and for all scalars cc and dd

e.g.

T:y=2x+1T : y = 2x + 1 is not a linear transformation

if c=2,d=3,u=1,v=4c = 2, d = 3, \textbf{u} = 1, \textbf{v} = 4

T(cu+dv)=2(2×1+3×4)+1=29T(c \textbf{u} + d \textbf{v}) = 2(2 \times 1 + 3 \times 4) + 1 = 29

cT(u)+dT(v)=2×(2×1+1)+3×(2×4+1)=6+27=33cT(\textbf{u}) + dT(\textbf{v}) = 2\times (2\times1 + 1) + 3\times (2\times4 + 1) = 6 + 27 = 33

Tips to make a linear transformation

e.g.

T:y=2x+1=[21][x1]T : y = 2x + 1 = \begin{bmatrix}2 & 1 \\ \end{bmatrix} \begin{bmatrix}x \\ 1 \end{bmatrix}

if c=2,d=3,u=1,v=4c = 2, d = 3, \textbf{u} = 1, \textbf{v} = 4

T(cu+dv)=[21](2×[11]+3×[41])=[21][145]=33T(c \textbf{u} + d \textbf{v}) = \begin{bmatrix}2 & 1 \\ \end{bmatrix} (2 \times \begin{bmatrix}1 \\ 1 \end{bmatrix} + 3 \times \begin{bmatrix}4 \\ 1 \end{bmatrix}) = \begin{bmatrix}2 & 1 \\ \end{bmatrix} \begin{bmatrix}14 \\ 5 \end{bmatrix} = 33

cT(u)+dT(v)=2×([21][11])+3×([21][41])=6+27=33cT(\textbf{u}) + dT(\textbf{v}) = 2\times (\begin{bmatrix}2 & 1 \\ \end{bmatrix} \begin{bmatrix}1 \\ 1 \end{bmatrix}) + 3\times (\begin{bmatrix}2 & 1 \\ \end{bmatrix}\begin{bmatrix}4 \\ 1 \end{bmatrix}) = 6 + 27 = 33

profile
AI Researcher
post-custom-banner

0개의 댓글