[Linear Algebra] Matrix of Linear Transformation

Jason Lee·2022년 8월 31일
0

Linear Algebra

목록 보기
16/26
post-custom-banner

Transformations between Vectors

  • T:xRnyRmT : \textbf{x} \in \mathbb{R}^n \mapsto \textbf{y} \in \mathbb{R}^m : mapping n-dim vector to m-dim vector

Matrix of Linear Transformation

  • Let T:RnRmT : \mathbb{R}^n \mapsto \mathbb{R}^m be a linear transformation, then TT is always written as a matrix-vector multiplication
    • T(x)=AxT(\textbf{x}) = A\textbf{x} for all xRn\textbf{x} \in \mathbb{R}^n
  • The j-th column of ARm×nA \in \mathbb{R}^{m \times n} is equal to the vector T(ej)T(\textbf{e}_j), where ej\textbf{e}_j is the j-th column of the identity matrix in Rn×n\mathbb{R}^{n \times n}
    • A=[T(e1)T(en)]A = \begin{bmatrix} T(\textbf{e}_1) \cdots T(\textbf{e}_n)\end{bmatrix}
    • The matrix AA is called the standard matrix of the linear transformation TT

e.g.

T([100])=[12],T([010])=[34],T([001])=[56]T\begin{pmatrix} \begin{bmatrix}1 \\0 \\0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, T\begin{pmatrix} \begin{bmatrix}0 \\1 \\0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, T\begin{pmatrix} \begin{bmatrix}0 \\0 \\1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}

x=[x1x2x3]=x1[100]+x2[010]+x3[001]\textbf{x} = \begin{bmatrix} x_1 \\x_2 \\x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\0 \\0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\1 \\0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\0 \\1 \end{bmatrix}

Tx=T(x1[100]+x2[010]+x3[001])T\textbf{x} = T\begin{pmatrix} x_1 \begin{bmatrix}1 \\0 \\0 \end{bmatrix} + x_2 \begin{bmatrix}0 \\1 \\0 \end{bmatrix} + x_3 \begin{bmatrix}0 \\0 \\1 \end{bmatrix} \end{pmatrix}

=x1T([100])+x2T([010])+x3T([001])= x_1 T\begin{pmatrix} \begin{bmatrix}1 \\0 \\0 \end{bmatrix} \end{pmatrix} + x_2 T\begin{pmatrix} \begin{bmatrix}0 \\1 \\0 \end{bmatrix} \end{pmatrix} + x_3 T\begin{pmatrix} \begin{bmatrix}0 \\0 \\1 \end{bmatrix} \end{pmatrix}

=x1[12]+x2[34]+x3[56]= x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 4 \end{bmatrix} + x_3 \begin{bmatrix} 5 \\ 6 \end{bmatrix}

=[135246][x1x2x3]=Ax= \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}\begin{bmatrix} x_1 \\x_2 \\x_3 \end{bmatrix} = A\textbf{x}

The matrix AA is made with standard bases, so we call them standard matrix of linear transformation TT

profile
AI Researcher
post-custom-banner

0개의 댓글