[Linear Algebra] Linear Transformation in Neural Networks

Jason Lee·2022년 9월 15일
0

Linear Algebra

목록 보기
17/26
post-custom-banner

Linear Transformation in Neural Networks

  • Fully-connected layer (linear layer, without bias)

    y=Ax\textbf{y} = A\textbf{x}

    ARm×nA \in \mathbb{R}^{m \times n} : weight matrix of fully-connected layer
    xRn\textbf{x} \in \mathbb{R}^{n} : input vector
    yRm\textbf{y} \in \mathbb{R}^{m} : output vector

Affine Layer in Neural Networks

  • Fully-connected layers usually have involve a bias term
  • That is why we call it an affine layer, but not a linear layer

    y=Ax+b\textbf{y} = A\textbf{x} + \textbf{b}

    ARm×nA \in \mathbb{R}^{m \times n} : weight matrix of fully-connected layer
    bRm\textbf{b} \in \mathbb{R}^{m} : bias vector of fully-connected layer
    xRn\textbf{x} \in \mathbb{R}^{n} : input vector
    yRm\textbf{y} \in \mathbb{R}^{m} : output vector

profile
AI Researcher
post-custom-banner

0개의 댓글