[DetnEst] 12. Deterministic Signal Detection

KBC·2024년 12월 11일
0

Detection and Estimation

목록 보기
19/23

Overview

Detection of a known signal in Gaussian noise

  • NP criterion or Bayes risk criterion
  • The test statistic is a linear function of the data due to the Gaussian noise assumption
  • The detector resulted from these assumptions is called the matched filter

Matched Filters

  • Detecting a known deterministic signal s[n],  n=0,1,,N1s[n],\;n=0,1,\cdots,N-1 in white Gaussian noise Neyman-Pearson criterion will be used
  • Bayesian risk criterion will result in the same test statistic; only the threshold differs
  • Binary hypothesis
    H0:x[n]=w[n],n=0,1,,N1H1:x[n]=s[n]+w[n],n=0,1,,N1s[n]:known signal,  w[n]:WGN with variance σ2ACF rww[k]=E(w[n]w[n+k])=σ2δ[k]\mathcal{H}_0:x[n]=w[n],\quad n=0,1,\cdots,N-1\\[0.2cm] \mathcal{H}_1:x[n]=s[n]+w[n],\quad n=0,1,\cdots,N-1\\[0.2cm] s[n]:\text{known signal},\;w[n]:\text{WGN with variance }\sigma^2\\[0.2cm] \text{ACF }r_{ww}[k]=E(w[n]w[n+k])=\sigma^2\delta[k]
  • NP detector : decide H1\mathcal{H}_1 if
    L(x)=p(x;H1)p(x;H0)>γlnp(x;H1)lnp(x;H0)>lnγL(\text{x})=\frac{p(\text{x};\mathcal{H}_1)}{p(\text{x};\mathcal{H}_0)}>\gamma\\[0.2cm] \rightarrow\frac{\ln p(\text{x};\mathcal{H}_1)}{\ln p(\text{x};\mathcal{H}_0)}>\ln \gamma

p(x;H1)=1(2πσ2)N/2exp[12σ2n=0N1(x[n]s[n])2]p(x;H0)=1(2πσ2)N/2exp[12σ2n=0N1x2[n]]L(x)=exp[12σ2(n=0N1(x[n]s[n])2n=0N1x2[n])]>γl(x)=lnL(x)=12σ2(n=0N1(x[n]s[n])2n=0N1x2[n])>lnγp(x; \mathcal{H}_1) = \frac{1}{(2\pi \sigma^2)^{N/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - s[n])^2 \right] \\[0.2cm] p(x; \mathcal{H}_0) = \frac{1}{(2\pi \sigma^2)^{N/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} x^2[n] \right] \\[0.2cm] \rightarrow L(x) = \exp\left[-\frac{1}{2\sigma^2} \left(\sum_{n=0}^{N-1} (x[n] - s[n])^2 - \sum_{n=0}^{N-1} x^2[n]\right)\right] > \gamma \\[0.2cm] \rightarrow l(x) = \ln L(x) = -\frac{1}{2\sigma^2} \left(\sum_{n=0}^{N-1} (x[n] - s[n])^2 - \sum_{n=0}^{N-1} x^2[n]\right) > \ln \gamma

  • decide H1\mathcal{H}_1 if
    n=0N1x[n]s[n]12σ2n=0N1s2[n]>lnγT(x)=n=0N1x[n]s[n]>σ2lnγ+12n=0N1s2[n]=γ\sum_{n=0}^{N-1} x[n] s[n] - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} s^2[n] > \ln \gamma \\[0.2cm] \rightarrow T(x) = \sum_{n=0}^{N-1} x[n] s[n] > \sigma^2 \ln \gamma + \frac{1}{2} \sum_{n=0}^{N-1} s^2[n] = \gamma'

  • Ex) Damped exponential in WGN
    s[n]=rn,0<r<1T(x)=n=0N1x[n]rns[n]=r^n,0<r<1\\[0.2cm] \rightarrow T(\text{x})=\sum^{N-1}_{n=0}x[n]r^n
  • Correlator (replica-correlator)
    T(x)=n=0N1x[n]s[n]T(\text{x})=\sum^{N-1}_{n=0}x[n]s[n]
  • Alternatively, if x[n]x[n] is an input signal to a finite impulse response (FIR) filter with impulse response h[n]h[n] which is nonzero for n=0,1,,N1n=0,1,\cdots,N-1, the output becomes
    y[n]=k=0nh[nk]x[k]y[n]=\sum^n_{k=0}h[n-k]x[k]
  • If we let h[n]=s[N1n],  n=0,1,,N1h[n]=s[N-1-n],\;n=0,1,\cdots,N-1 then,
    y[n]=k=0ns[N1(nk)]x[k]y[N1]=k=0N1s[k]x[k]Matched Filtery[n]=\sum^n_{k=0}s[N-1-(n-k)]x[k]\\[0.2cm] y[N-1]=\sum^{N-1}_{k=0} s[k]x[k] \rightarrow \text{Matched Filter}

  • In the frequency domain

    y[n]=1212H(f)X(f)exp(j2πfn)dfH(f),X(f):discrete-time Fourier transform of h[n],x[n]h[n]=s[N1n]H(f)=S(f)exp[j2πf(N1)]y[n]=1212S(f)X(f)exp(j2πf(n(N1))dfy[N1]=1212S(f)X(f)dfy[n]=\int^{\frac{1}{2}}_{-\frac{1}{2}}H(f)X(f)\exp(j2\pi fn)df\\[0.2cm] H(f),X(f):\text{discrete-time Fourier transform of }h[n],x[n]\\[0.2cm] h[n]=s[N-1-n]\rightarrow H(f)=S^*(f)\exp[-j2\pi f(N-1)]\\[0.2cm] y[n]=\int^{\frac{1}{2}}_{-\frac{1}{2}}S^*(f)X(f)\exp(j2\pi f(n-(N-1))df\rightarrow y[N-1]=\int^{\frac{1}{2}}_{-\frac{1}{2}}S^*(f) X(f)df
    • Matched filter emphasizes the band with more signal power
    • When the noise is absent, the matched filter output is just the signal energy
  • A filter which maximizes the SNR at the output (η\eta) of the filter

    η=E2(y[N1];H1)var(y[N1];H1)=(k=0N1h[N1k]s[k])2E[(k=0N1h[N1k]w[k])2]\eta = \frac{\mathbb{E}^2\left(y[N-1]; \mathcal{H}_1\right)}{\text{var}\left(y[N-1]; \mathcal{H}_1\right)} = \frac{\left(\sum_{k=0}^{N-1} h[N-1-k] s[k]\right)^2} {\mathbb{E}\left[\left(\sum_{k=0}^{N-1} h[N-1-k] w[k]\right)^2\right]}
  • Let s=[s[0]s[1]s[N1]]T\mathbf{s} = [s[0] \, s[1] \, \dots \, s[N-1]]^T

  • h=[h[N1]h[N2]h[0]]T\mathbf{h} = [h[N-1] \, h[N-2] \, \dots \, h[0]]^T

  • w=[w[0]w[1]w[N1]]T\mathbf{w} = [w[0] \, w[1] \, \dots \, w[N-1]]^T

    thenη=(hTs)2E[(hTw)2]=(hTs)2hTE(wwT)h=(hTs)2hTσ2Ih=1σ2(hTs)2hTh\text{then} \quad \eta = \frac{(\mathbf{h}^T \mathbf{s})^2}{\mathbb{E}[(\mathbf{h}^T \mathbf{w})^2]} = \frac{(\mathbf{h}^T \mathbf{s})^2}{\mathbf{h}^T \mathbb{E}(\mathbf{w} \mathbf{w}^T) \mathbf{h}} = \frac{(\mathbf{h}^T \mathbf{s})^2}{\mathbf{h}^T \sigma^2 \mathbf{I} \mathbf{h}} = \frac{1}{\sigma^2} \frac{(\mathbf{h}^T \mathbf{s})^2}{\mathbf{h}^T \mathbf{h}}
  • By the Cauchy-Schwarz inequality

    (hTs)2(hTh)(sTs)(\text{h}^T\text{s})^2\leq(\text{h}^T\text{h})(\text{s}^T\text{s})

    with equality if and only if h=cs\text{h}=c\text{s}

  • Then

    η1σ2sTs\eta\leq\frac{1}{\sigma^2}\text{s}^T\text{s}

    with equality if and only if h=cs\text{h}=c\text{s}

  • The maximum SNR is attained for

    h[N1n]=s[n]or h[n]=s[N1n],n=0,1,,N1h[N-1-n]=s[n]\\[0.2cm] \text{or }h[n]=s[N-1-n],\quad n=0,1,\cdots,N-1
  • For WGN, the NP criterion and the maximum SNR criterion lead to the same matched filter

  • For non-Gaussian case, NP detector is not linear


Performance of matched filter

(PDP_D for a given PFAP_{FA})

  • H1\mathcal{H}_1 if
    T(x)=n=0N1x[n]s[n]>γ2T(x) is GaussianE(T;H0)=E(n=0N1w[n]s[n])=0,E(T;H1)=E(n=0N1(s[n]+w[n])s[n])=n=0N1s2[n]Evar(T;H0)=var(n=0N1w[n]s[n])=n=0N1var(w[n])s2[n]=σ2n=0N1s2[n]=σ2Evar(T;H1)=var(T;H0)T(\text{x})=\sum^{N-1}_{n=0}x[n]s[n]>\gamma^2\\[0.2cm] T(\text{x})\text{ is Gaussian}\\[0.2cm] \mathbb{E}(T; \mathcal{H}_0) = \mathbb{E}\left(\sum_{n=0}^{N-1} w[n] s[n]\right) = 0, \\[0.2cm] \mathbb{E}(T; \mathcal{H}_1) = \mathbb{E}\left(\sum_{n=0}^{N-1} (s[n] + w[n]) s[n]\right) = \sum_{n=0}^{N-1} s^2[n] \triangleq \mathcal{E} \\[0.2cm] \text{var}(T; \mathcal{H}_0) = \text{var}\left(\sum_{n=0}^{N-1} w[n] s[n]\right) = \sum_{n=0}^{N-1} \text{var}(w[n]) s^2[n] = \sigma^2 \sum_{n=0}^{N-1} s^2[n] = \sigma^2 \mathcal{E} \\[0.2cm] \text{var}(T; \mathcal{H}_1) = \text{var}(T; \mathcal{H}_0)

The test statistic

T{N(0,σ2E)under H0N(E,σ2E)under H1T \sim \begin{cases} \mathcal{N}(0, \sigma^2 \mathcal{E}) & \text{under } \mathcal{H}_0 \\[0.2cm] \mathcal{N}(\mathcal{E}, \sigma^2 \mathcal{E}) & \text{under } \mathcal{H}_1 \end{cases}
  • Thus
    PFA=Pr{T>γ;H0}=Q(γσ2E)PD=Pr{T>γ;H1}=Q(γEσ2E)=Q(Q1(PFA)Eσ2)P_{FA} = \Pr\{T > \gamma'; \mathcal{H}_0\} = Q\left(\frac{\gamma'}{\sqrt{\sigma^2 \mathcal{E}}}\right) \\[0.2cm] P_D = \Pr\{T > \gamma'; \mathcal{H}_1\} = Q\left(\frac{\gamma' - \mathcal{E}}{\sqrt{\sigma^2 \mathcal{E}}}\right) = Q\left(Q^{-1}(P_{FA}) - \sqrt{\frac{\mathcal{E}}{\sigma^2}}\right)

  • The shape of the signal does not affect the detection performance
  • Only the ENR matters
  • But the signal shape affects the performance when the noise is colored

Generalized Matched Filters

Correlated noise : wN(0,C)\text{w}\sim \mathcal{N}(0,\text{C})

  • If the noise is WSS, [C]mn=rww[mn][\text{C}]_{mn}=r_{ww}[m-n] : a symmetric Toeplitz matrix
  • If the noise is nonstationary, C\text{C} will be arbitrary covariance matrix
    p(x;H1)=1(2π)N/2detCexp(12(xs)TC1(xs))p(x;H0)=1(2π)N/2detCexp(12xTC1x)p(x; \mathcal{H}_1) = \frac{1}{(2\pi)^{N/2} \sqrt{\det \mathbf{C}}} \exp\left(-\frac{1}{2} (x - s)^T \mathbf{C}^{-1} (x - s)\right) \\[0.2cm] p(x; \mathcal{H}_0) = \frac{1}{(2\pi)^{N/2} \sqrt{\det \mathbf{C}}} \exp\left(-\frac{1}{2} x^T \mathbf{C}^{-1} x\right)
  • LRT : decide H1\mathcal{H}_1 if
    l(x)=lnp(x;H1)p(x;H0)>lnγ,l(x)=xTC1s12sTC1sl(x) = \ln \frac{p(x; \mathcal{H}_1)}{p(x; \mathcal{H}_0)} > \ln \gamma, \\[0.2cm] l(x) = x^T \mathbf{C}^{-1} s - \frac{1}{2} s^T \mathbf{C}^{-1} s
  • T(x)=xTC1s>γT(\text{x})=\text{x}^T\mathbf{C}^{-1}\text{s}>\gamma' : generalized matched filter
  • If we let s=C1s,  T(x)=xTss''=C^{-1}s,\;T(\text{x})=\text{x}^Ts'' : correlation with modified signal

Prewhitening

  • For any C\text{C}(positive definite), it can be shown that C1\text{C}^{-1} exists and is also positive definite
    C1=DTD\rightarrow C^{-1}=D^TD where DD is a nonsingular prewhitening matrix
    T(x)=xTC1s=xTDTDs=xTswhere x=Dx,  s=DsT(\text{x})=\text{x}^TC^{-1}s=\text{x}^TD^TDs=\text{x}'^Ts'\\[0.2cm] \text{where }\text{x}'=D\text{x},\;s'=Ds
  • Prewhitening : w=Dw\text{w}'=D\text{w} becomes WGN
    as Cw=E(wwT)=DCDT=IC_{\text{w}'}=E(\text{w}'\text{w}'^T)=DCD^T=I
  • If the length NN is large and the noise is WSS
    T(x)=1/21/2X(f)S(f)Pww(f)dfT(\text{x})=\int^{1/2}_{-1/2}\frac{X(f)S^*(f)}{P_{\text{w}\text{w}}(f)}df
    where Pww(f)P_{\text{w}\text{w}(f)} is the PSD of the noise (Power Spectral Density)

Performance of generalized matched filter

T(x)=xTC1s:GaussianE(T;H0)=E(wTC1s)=0E(T;H1)=E((s+w)TC1s)=sTC1svar(T;H0)=E[(wTC1s)2]=sTC1E[wwT]C1s=sTC1svar(T;H1)=var(T;H0)PD=Q(Q1(PFA)d2)d2=(E(T;H1)E(T;H0))2var(T;H0)=sTC1s:deflection coefficientPD=Q(Q1(PFA)sTC1s)T(x) = x^T \mathbf{C}^{-1} s : \text{Gaussian} \\[0.2cm] \mathbb{E}(T; \mathcal{H}_0) = \mathbb{E}(w^T \mathbf{C}^{-1} s) = 0 \\[0.2cm] \mathbb{E}(T; \mathcal{H}_1) = \mathbb{E}((s + w)^T \mathbf{C}^{-1} s) = s^T \mathbf{C}^{-1} s \\[0.2cm] \text{var}(T; \mathcal{H}_0) = \mathbb{E}[(w^T \mathbf{C}^{-1} s)^2] = s^T \mathbf{C}^{-1} \mathbb{E}[ww^T] \mathbf{C}^{-1} s = s^T \mathbf{C}^{-1} s \\[0.2cm] \text{var}(T; \mathcal{H}_1) = \text{var}(T; \mathcal{H}_0) \\[0.2cm] \rightarrow P_D = Q\left(Q^{-1}(P_{FA}) - \sqrt{d^2}\right) \\[0.2cm] d^2 = \frac{\left(\mathbb{E}(T; \mathcal{H}_1) - \mathbb{E}(T; \mathcal{H}_0)\right)^2}{\text{var}(T; \mathcal{H}_0)} = s^T \mathbf{C}^{-1} s : \text{deflection coefficient} \\[0.2cm] P_D = Q\left(Q^{-1}(P_{FA}) - \sqrt{s^T \mathbf{C}^{-1} s}\right)

  • Example of signal design for uncorrelated noise with unequal variances
    C1=diag(1σ02,1σ12,,1σN12)sTC1s=n=0N1s2[n]σn2\mathbf{C}^{-1} = \text{diag}\left(\frac{1}{\sigma_0^2}, \frac{1}{\sigma_1^2}, \dots, \frac{1}{\sigma_{N-1}^2}\right) \rightarrow s^T \mathbf{C}^{-1} s = \sum_{n=0}^{N-1} \frac{s^2[n]}{\sigma_n^2}
    • We want to maximize d2=sTC1sd^2=\text{s}^TC^{-1}\text{s} subject to the constraint
      n=0N1s2[n]=E\sum_{n=0}^{N-1} s^2[n] = \mathcal{E}
    • By using Lagrangian multipliers
      F=n=0N1s2[n]σn2+λ(En=0N1s2[n])Fs[k]=2s[k]σk22λs[k]=2s[k](1σk2λ)=0,k=0,1,,N1F = \sum_{n=0}^{N-1} \frac{s^2[n]}{\sigma_n^2} + \lambda \left(\mathcal{E} - \sum_{n=0}^{N-1} s^2[n]\right) \\[0.2cm] \frac{\partial F}{\partial s[k]} = \frac{2s[k]}{\sigma_k^2} - 2\lambda s[k] = 2s[k] \left(\frac{1}{\sigma_k^2} - \lambda\right) = 0, \quad k = 0, 1, \dots, N-1

  • Assuming all the σn2\sigma^2_n are different, we can have
    (1σk2λ)=0\left(\frac{1}{\sigma^2_k}-\lambda\right)=0
    for at most one kk
  • Let jj be the index that satisfies
    (1σj2λ)=0\left(\frac{1}{\sigma^2_j}-\lambda\right)=0
  • Then s[k]=0s[k]=0 for kjk\neq j
    sTC1s=s2[j]σj2=Eσj2\text{s}^TC^{-1}\text{s}=\frac{s^2[j]}{\sigma^2_j}=\frac{\mathcal{E}}{\sigma^2_j}
    \rightarrow choose jj for which σj2\sigma^2_j is minimum

For an arbitrary noise covariance matrix

  • The signal is chosen by maximizing sTC1s\text{s}^TC^{-1}\text{s} subject to the fixed energy constraint sTs=Es^Ts=\mathcal{E}
    F=sTC1s+λ(EsTs)Fs=2C1s2λs=0C1s=λss is an eigenvector of C1sTC1s=sTλs=λEF = s^T \mathbf{C}^{-1} s + \lambda \left(\mathcal{E} - s^T s\right) \\[0.2cm] \frac{\partial F}{\partial s} = 2 \mathbf{C}^{-1} s - 2\lambda s = 0 \\[0.2cm] \rightarrow \mathbf{C}^{-1} s = \lambda s \quad \rightarrow \quad s \text{ is an eigenvector of } \mathbf{C}^{-1} \\[0.2cm] s^T \mathbf{C}^{-1} s = s^T \lambda s = \lambda \mathcal{E}
    • s\text{s} is eigenvector of C1C^{-1} corresponding to the largest eigenvalue λ\lambda
    • Alternatively, Cs=1λsCs=\frac{1}{\lambda}s
      ss is the eigenvector of CC corresponding to the minimum eigenvalue λ\lambda

Example of signal design for colored noise

C=[1ρρ1]C=\left[\begin{matrix}1 &\rho\\\rho&1\end{matrix}\right]
  • Eigenvalues
    (CλiI)v=0λ1=1+ρ,  λ2=1ρ(C-\lambda_iI)\text{v}=0\rightarrow\lambda_1=1+\rho,\;\lambda_2=1-\rho
  • Eigenvectors
    v1=[1/21/2],  v2=[1/21/2]\text{v}_1=\left[\begin{matrix}1/\sqrt{2}\\1/\sqrt{2}\end{matrix}\right],\;\text{v}_2=\left[\begin{matrix}1/\sqrt{2}\\-1/\sqrt{2}\end{matrix}\right]
  • Assuming ρ>0,s=Ev2=E/2[11]\rho>0,\text{s}=\sqrt{\mathcal{E}}\text{v}_2=\sqrt{\mathcal{E}/2}\left[\begin{matrix}1\\-1\end{matrix}\right]
    T(x)=xTC1s=xTC1Ev2=ExT1λ2v2=E/21ρ(x[0]x[1])\rightarrow T(x) = x^T \mathbf{C}^{-1} s = x^T \mathbf{C}^{-1} \sqrt{\mathcal{E}} v_2 = \sqrt{\mathcal{E}} x^T \frac{1}{\lambda_2} v_2 = \frac{\sqrt{\mathcal{E}/2}}{1 - \rho} \left(x[0] - x[1]\right)
  • Since s[1]=s[0]s[1]=-s[0], the signal contribution in (x[0]x[1])(x[0]-x[1]) will not be cancelled
    d2=sTC1s=Ev2TC1v2=Ev2T1λ2v2=Eλ2=E1ρd^2 = s^T \mathbf{C}^{-1} s = \mathcal{E} v_2^T \mathbf{C}^{-1} v_2 = \mathcal{E} v_2^T \frac{1}{\lambda_2} v_2 \\[0.2cm] = \frac{\mathcal{E}}{\lambda_2} = \frac{\mathcal{E}}{1 - \rho}
  • For a large data record and WSS noise,
    d2=1/21/2S(f)2Pww(f)dfd^2 = \int_{-1/2}^{1/2} \frac{|S(f)|^2}{P_{ww}(f)} df
    concentrate signal energy to the band where the noise PSD is minimum

Multiple Signals

Sonar/radar systems : detection of a known signal in noise
Communication systems : signal is there, but we should decide which signal it is

Binary case

  • Minimum probability of error criterion & equal prior probabilities
    H0:x[n]=s0[n]+w[n],n=0,1,,N1H1:x[n]=s1[n]+w[n],n=0,1,,N1s0[n],s1[n]:known deterministic signals,w[n]:WGN with variance σ2\mathcal{H}_0 : x[n] = s_0[n] + w[n], \quad n = 0, 1, \cdots, N-1 \\[0.2cm] \mathcal{H}_1 : x[n] = s_1[n] + w[n], \quad n = 0, 1, \cdots, N-1 \\[0.2cm] s_0[n], s_1[n] : \text{known deterministic signals,} \quad w[n] : \text{WGN with variance } \sigma^2
  • Decide H1\mathcal{H}_1 if
    p(xH1)p(xH0)>γ=(C10C00)P(H0)(C01C11)P(H1)=1,p(xHi)=1(2πσ2)N/2exp[12σ2n=0N1(x[n]si[n])2]\frac{p(x | \mathcal{H}_1)}{p(x | \mathcal{H}_0)} > \gamma = \frac{(C_{10} - C_{00})P(\mathcal{H}_0)}{(C_{01} - C_{11})P(\mathcal{H}_1)} = 1, \\[0.2cm] p(x | \mathcal{H}_i) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp \left[ -\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \left(x[n] - s_i[n]\right)^2 \right]
  • Decide Hi\mathcal{H}_i for which
    Di2=n=0N1(x[n]si[n])2 is minimum.minimum distance criterionDi2=(xsi)T(xsi)=xsi2: squared Euclidean distanceChoose the hypothesis whose signal vector is closest to xDecide Hi for whichTi(x)=n=0N1x[n]si[n]12n=0N1si2[n]=n=0N1x[n]si[n]12EiD_i^2 = \sum_{n=0}^{N-1} \left(x[n] - s_i[n]\right)^2 \text{ is minimum.} \\[0.2cm] \rightarrow \text{minimum distance criterion} \\[0.2cm] D_i^2 = \left(x - s_i\right)^T \left(x - s_i\right) = \|x - s_i\|^2 \\[0.2cm] \text{: squared Euclidean distance} \\[0.2cm] \rightarrow \text{Choose the hypothesis whose signal vector is closest to } x \\[0.2cm] \text{Decide } \mathcal{H}_i \text{ for which} \\[0.2cm] T_i(x) = \sum_{n=0}^{N-1} x[n]s_i[n] - \frac{1}{2} \sum_{n=0}^{N-1} s_i^2[n] = \sum_{n=0}^{N-1} x[n]s_i[n] - \frac{1}{2}\mathcal{E}_i

Performance

Pe=P(H1H0)P(H0)+P(H0H1)P(H1)=12[P(H1H0)+P(H0H1)]=12[Pr{T1(x)>T0(x)H0}+Pr{T0(x)>T1(x)H1}]LetT(x)=T1(x)T0(x)=n=0N1x[n](s1[n]s0[n])12(E1E0): Gaussian random variable conditioned on either hypothesisP_e = P(\mathcal{H}_1|\mathcal{H}_0)P(\mathcal{H}_0) + P(\mathcal{H}_0|\mathcal{H}_1)P(\mathcal{H}_1) \\[0.2cm] = \frac{1}{2} \left[ P(\mathcal{H}_1|\mathcal{H}_0) + P(\mathcal{H}_0|\mathcal{H}_1) \right] \\[0.2cm] = \frac{1}{2} \left[ \text{Pr}\{T_1(x) > T_0(x)|\mathcal{H}_0\} + \text{Pr}\{T_0(x) > T_1(x)|\mathcal{H}_1\} \right] \\[0.2cm] \text{Let} \\[0.2cm] T(x) = T_1(x) - T_0(x) = \sum_{n=0}^{N-1} x[n]\left(s_1[n] - s_0[n]\right) - \frac{1}{2} \left(\mathcal{E}_1 - \mathcal{E}_0\right) \\[0.2cm] \text{: Gaussian random variable conditioned on either hypothesis}
E(TH0)=n=0N1s0[n](s1[n]s0[n])12(E1E0)=n=0N1s0[n]s1[n]12n=0N1s02[n]12n=0N1s12[n]=12n=0N1(s1[n]s0[n])2=12s1s02E(TH1)=12s1s02=E(TH0)var(TH0)=var(n=0N1x[n](s1[n]s0[n])H0)=n=0N1var(x[n])(s1[n]s0[n])2=σ2s1s02var(TH1)=var(TH0)=σ2s1s02E(T|\mathcal{H}_0) = \sum_{n=0}^{N-1} s_0[n](s_1[n] - s_0[n]) - \frac{1}{2}(\mathcal{E}_1 - \mathcal{E}_0) \\[0.2cm] = \sum_{n=0}^{N-1} s_0[n]s_1[n] - \frac{1}{2} \sum_{n=0}^{N-1} s_0^2[n] - \frac{1}{2} \sum_{n=0}^{N-1} s_1^2[n] \\[0.2cm] = -\frac{1}{2} \sum_{n=0}^{N-1} (s_1[n] - s_0[n])^2 = -\frac{1}{2} \| s_1 - s_0 \|^2 \\[0.2cm] E(T|\mathcal{H}_1) = \frac{1}{2} \| s_1 - s_0 \|^2 = -E(T|\mathcal{H}_0) \\[0.2cm] \text{var}(T|\mathcal{H}_0) = \text{var} \left( \sum_{n=0}^{N-1} x[n](s_1[n] - s_0[n]) \big| \mathcal{H}_0 \right) \\[0.2cm] = \sum_{n=0}^{N-1} \text{var}(x[n]) (s_1[n] - s_0[n])^2 \\[0.2cm] = \sigma^2 \| s_1 - s_0 \|^2 \\[0.2cm] \text{var}(T|\mathcal{H}_1) = \text{var}(T|\mathcal{H}_0) = \sigma^2 \| s_1 - s_0 \|^2
Pe=Pr{T>0;H0}=Q(12s1s02σ2s1s02)=Q(12s1s02σs1s0)=Q(12s1s02σ2)Assuming the constraint on the average signal energyEˉ=12(E0+E1),s1s02=2Eˉ2s1Ts0=2Eˉ(1ρs)where ρs=s1Ts0Eˉ:correlation coefficient(different from Pearson correlation coefficient)Pe=Q(Eˉ(1ρs)2σ2)P_e = \Pr\{T > 0; \mathcal{H}_0\} = Q\left( \frac{\frac{1}{2} \| s_1 - s_0 \|^2}{\sqrt{\sigma^2 \| s_1 - s_0 \|^2}} \right) \\[0.2cm] = Q \left( \frac{\frac{1}{2} \| s_1 - s_0 \|^2}{\sigma \| s_1 - s_0 \|} \right) \\[0.2cm] = Q \left( \frac{\frac{1}{2} \| s_1 - s_0 \|^2}{\sigma^2} \right) \\[0.2cm] \text{Assuming the constraint on the average signal energy} \\[0.2cm] \bar{\mathcal{E}} = \frac{1}{2} (\mathcal{E}_0 + \mathcal{E}_1), \\[0.2cm] \| s_1 - s_0 \|^2 = 2 \bar{\mathcal{E}} - 2 s_1^T s_0 = 2 \bar{\mathcal{E}} (1 - \rho_s) \\[0.2cm] \text{where } \rho_s = \frac{s_1^T s_0}{\bar{\mathcal{E}}} : \text{correlation coefficient} \\[0.2cm] \text{(different from Pearson correlation coefficient)} \\[0.2cm] P_e = Q \left( \sqrt{\frac{\bar{\mathcal{E}} (1 - \rho_s)}{2 \sigma^2}} \right)

  • Example of phase shift keying(PSK)
    s0[n]=Acos2πf0ns1[n]=Acos(2πf0n+π)=Acos2πf0nρs=s1Ts0Eˉ=1    Pe=Q(Eˉσ2)s_0[n] = A \cos 2 \pi f_0 n \\[0.2cm] s_1[n] = A \cos (2 \pi f_0 n + \pi) = -A \cos 2 \pi f_0 n \\[0.2cm] \rho_s = \frac{s_1^T s_0}{\bar{\mathcal{E}}} = -1 \implies P_e = Q \left( \sqrt{\frac{\bar{\mathcal{E}}}{\sigma^2}} \right)
  • Example of frequency shift keying(FSK)
    s0[n]=Acos2πf0n,n=0,,N1s1[n]=Acos2πf1n,n=0,,N1 If f1f012N, the signals are approximately orthogonal.ρs=0    Pe=Q(Eˉ2σ2)s_0[n] = A \cos 2 \pi f_0 n, \quad n = 0, \cdots, N-1 \\[0.2cm] s_1[n] = A \cos 2 \pi f_1 n, \quad n = 0, \cdots, N-1 \\[0.2cm] \bullet \ \text{If } |f_1 - f_0| \gg \frac{1}{2N}, \ \text{the signals are approximately orthogonal.} \\[0.2cm] \rho_s = 0 \implies P_e = Q \left( \sqrt{\frac{\bar{\mathcal{E}}}{2 \sigma^2}} \right)

M-ARY Case

MM signals s0[n],s1[n],,sM1[n]s_0[n],s_1[n],\cdots,s_{M-1}[n] with equal prior probabilities

  • Choose Hi\mathcal{H}_i for which p(xHi)p(\text{x}|\mathcal{H}_i) is maximum
  • Choose Hk\mathcal{H}_k if
    Tk(x)=n=0N1x[n]sk[n]12Ekis the maximum statistic of {T0(x),T1(x),,TM1(x)}.T_k(\mathbf{x}) = \sum_{n=0}^{N-1} x[n] s_k[n] - \frac{1}{2} \mathcal{E}_k \\[0.2cm] \text{is the maximum statistic of } \{T_0(\mathbf{x}), T_1(\mathbf{x}), \cdots, T_{M-1}(\mathbf{x})\}.

Performance

  • In general, difficult to evaluate the probability of error
  • Assume that the signals are orthogonal and have equal energies Ei=E\mathcal{E}_i=\mathcal{E}(for simplicity)
    cov(Ti,Tj;Hi)=E(n=0N1w[n]si[n]n=0N1w[n]sj[n])=m=0N1n=0N1E(w[m]w[n])si[m]sj[n]=σ2n=0N1si[n]sj[n]=0for ijPe=i=0M1Pr{Ti<max(T0,,Ti1,Ti+1,,TM1)    Hi}P(Hi)=Pr{T0<max(T1,T2,,TM1)    H0}.\text{cov}(T_i, T_j; \mathcal{H}_i) = E \left( \sum_{n=0}^{N-1} w[n] s_i[n] \sum_{n=0}^{N-1} w[n] s_j[n] \right) \\[0.2cm] = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} E(w[m] w[n]) s_i[m] s_j[n] \\[0.2cm] = \sigma^2 \sum_{n=0}^{N-1} s_i[n] s_j[n] = 0 \quad \text{for } i \neq j \\[0.2cm] P_e = \sum_{i=0}^{M-1} \text{Pr} \{T_i < \max(T_0, \cdots, T_{i-1}, T_{i+1}, \cdots, T_{M-1}) \; | \; \mathcal{H}_i\} P(\mathcal{H}_i) \\[0.2cm] = \text{Pr} \{T_0 < \max(T_1, T_2, \cdots, T_{M-1}) \; | \; \mathcal{H}_0\}.
  • Conditioned on H0\mathcal{H}_0
    Ti(x)=n=0N1x[n]si[n]12Ei{N(12Ei,σ2E),for i=0N(12Ei,σ2E),for i0Pe=1Pr{T0>max(T1,T2,,TM1)    H0}=1Pr{T1<T0,T2<T0,,TM1<T0    H0}=1Pr{T1<t,T2<t,,TM1<t    T0=t,H0}pT0(t)dt=1i=1M1Pr{Ti<t    H0}pT0(t)dt.T_i(\mathbf{x}) = \sum_{n=0}^{N-1} x[n] s_i[n] - \frac{1}{2} \mathcal{E}_i \sim \begin{cases} \mathcal{N} \left( \frac{1}{2} \mathcal{E}_i, \sigma^2 \mathcal{E} \right), & \text{for } i = 0 \\[0.2cm] \mathcal{N} \left( -\frac{1}{2} \mathcal{E}_i, \sigma^2 \mathcal{E} \right), & \text{for } i \neq 0 \end{cases} \\[0.4cm] P_e = 1 - \text{Pr} \{ T_0 > \max(T_1, T_2, \cdots, T_{M-1}) \; | \; \mathcal{H}_0 \} \\[0.2cm] = 1 - \text{Pr} \{ T_1 < T_0, T_2 < T_0, \cdots, T_{M-1} < T_0 \; | \; \mathcal{H}_0 \} \\[0.2cm] = 1 - \int_{-\infty}^\infty \text{Pr} \{ T_1 < t, T_2 < t, \cdots, T_{M-1} < t \; | \; T_0 = t, \mathcal{H}_0 \} p_{T_0}(t) \, dt \\[0.2cm] = 1 - \int_{-\infty}^\infty \prod_{i=1}^{M-1} \text{Pr} \{ T_i < t \; | \; \mathcal{H}_0 \} p_{T_0}(t) \, dt.
    =1ΦM1(t+12Eσ2E)12πσ2Eexp[12σ2E(t12E)2]dt=1ΦM1(u)12πexp[12(uEσ2)2]duwhere Φ() is the CDF of N(0,1) random variable.= 1 - \int_{-\infty}^\infty \Phi^{M-1} \left( \frac{t + \frac{1}{2} \mathcal{E}}{\sqrt{\sigma^2 \mathcal{E}}} \right) \frac{1}{\sqrt{2\pi \sigma^2 \mathcal{E}}} \exp \left[ -\frac{1}{2\sigma^2 \mathcal{E}} \left( t - \frac{1}{2} \mathcal{E} \right)^2 \right] dt \\[0.4cm] = 1 - \int_{-\infty}^\infty \Phi^{M-1}(u) \frac{1}{\sqrt{2\pi}} \exp \left[ -\frac{1}{2} \left( u - \sqrt{\frac{\mathcal{E}}{\sigma^2}} \right)^2 \right] du \\[0.4cm] \text{where } \Phi(\cdot) \text{ is the CDF of } \mathcal{N}(0,1) \text{ random variable.}

All Content has been written based on lecture of Prof. eui-seok.Hwang in GIST(Detection and Estimation)

profile
AI, Security

0개의 댓글