[DetnEst] Assignment 6

KBC·2024년 12월 12일
0

Detection and Estimation

목록 보기
15/23

P1

Let (X0,X1,,XN1)(X_0,X_1,\dots,X_{N-1}) be a normal random variable XX with maen μ\mu and variance σ2\sigma^2, where μ\mu is unknown. Assume that μ\mu is itself to be a normal random variable with mean μ1\mu_1 and variance σ12\sigma^2_1.
Find the Bayes estimate of μ\mu

Solution

μ^=E(μx)=μp(μx)dμp(μx)=p(xμ)p(μ)p(x)=p(xμ)p(μ)p(xμ)p(μ)dμp(xμ)=n=0N112πσ2exp[12σ2(x[n]μ)2]=1(2πσ2)N/2exp[12σ2n=0N1(x[n]μ)2]p(μ)=12πσ12[12σ12(μμ1)2]p(μx)=1(2πσ2)N/22πσ12exp[12σ2n=0N1(x[n]μ)212σ12(μμ1)2]1(2πσ2)N/22πσ12exp[12σ2n=0N1(x[n]μ)212σ12(μμ1)2]dμ12σ2n=0N1(x[n]μ)212σ12(μμ1)2=μ2(N2σ212σ12)+μ(1σ2n=0N1x[n]+μ1σ12)x2[n]2σ2μ122σ12Let σμx2=1Nσ2+1σ12,  μμx=(1σ2n=0N1x[n]+μ1σ12)σμx2\hat \mu=E(\mu|\text{x})=\int\mu p(\mu|\text{x})d\mu\\[0.2cm] p(\mu|\text{x})=\frac{p(\text{x}|\mu)p(\mu)}{p(\text{x})}=\frac{p(\text{x}|\mu)p(\mu)}{\int p(\text{x}|\mu)p(\mu)d\mu}\\[0.2cm] p(\text{x}|\mu)=\prod^{N-1}_{n=0} \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{1}{2\sigma^2}\left(x[n]-\mu\right)^2\right]=\frac{1}{(2\pi\sigma^2)^{N/2}}\exp\left[-\frac{1}{2\sigma^2}\sum^{N-1}_{n=0}(x[n]-\mu)^2\right]\\[0.3cm] p(\mu)=\frac{1}{\sqrt{2\pi\sigma^2_1}}\left[-\frac{1}{2\sigma^2_1}(\mu-\mu_1)^2\right]\\[0.2cm] \rightarrow p(\mu|\text{x})=\frac{\frac{1}{(2\pi\sigma^2)^{N/2}\sqrt{2\pi\sigma^2_1}}\exp\left[-\frac{1}{2\sigma^2}\sum^{N-1}_{n=0}(x[n]-\mu)^2-\frac{1}{2\sigma^2_1}(\mu-\mu_1)^2\right]}{\int\frac{1}{(2\pi\sigma^2)^{N/2}\sqrt{2\pi\sigma^2_1}}\exp\left[-\frac{1}{2\sigma^2}\sum^{N-1}_{n=0}(x[n]-\mu)^2-\frac{1}{2\sigma^2_1}(\mu-\mu_1)^2\right]d\mu}\\[0.3cm] -\frac{1}{2\sigma^2}\sum^{N-1}_{n=0}(x[n]-\mu)^2-\frac{1}{2\sigma^2_1}(\mu-\mu_1)^2\\[0.2cm] =\mu^2\left(-\frac{N}{2\sigma^2}-\frac{1}{2\sigma^2_1}\right)+\mu\left(\frac{1}{\sigma^2}\sum^{N-1}_{n=0}x[n]+\frac{\mu_1}{\sigma^2_1}\right)-\frac{\sum x^2[n]}{2\sigma^2}-\frac{\mu^2_1}{2\sigma^2_1}\\[0.3cm] \color{red}{\text{Let }\sigma^2_{\mu|\text{x}}=\frac{1}{\frac{N}{\sigma^2}+\frac{1}{\sigma^2_1}},\;\mu_{\mu|\text{x}}=\left(\frac{1}{\sigma^2}\sum^{N-1}_{n=0}x[n]+\frac{\mu_1}{\sigma^2_1}\right)\sigma^2_{\mu|\text{x}}}\\[0.3cm]
=121σμx2(μ22μμxμ+μμx2)12μμx2σμx2x2[n]2σ2μ122σ12not depend on μ=-\frac{1}{2}\frac{1}{\sigma^2_{\mu|\text{x}}}(\mu^2-2\mu_{\mu|\text{x}}\mu+\mu_{\mu|\text{x}}^2)\color{blue}{-\frac{1}{2}\cdot\frac{\mu^2_{\mu|\text{x}}}{\sigma^2_{\mu|\text{x}}}-\frac{\sum x^2[n]}{2\sigma^2}-\frac{\mu^2_1}{2\sigma^2_1}} \cdots \text{not depend on }\mu
p(μx)=exp[12σμx2(μμμx)2]exp[12σμx2(μμμx)2]dμ=12πσμx2exp[12σμx2(μμμx)2]Gaussianμ^=E[μx]=μμx=(1σ2n=0N1x[n]+μ1σ12)(1Nσ2+1σ12)μ^=σ12n=0N1x[n]+μ1σ2Nσ12+σ2\rightarrow p(\mu|\text{x})=\frac{\exp\left[-\frac{1}{2\sigma^2_{\mu|\text{x}}}(\mu-\mu_{\mu|\text{x}})^2\right]}{\int\exp\left[-\frac{1}{2\sigma^2_{\mu|\text{x}}}(\mu-\mu_{\mu|\text{x}})^2\right]d\mu}\\[0.3cm] =\frac{1}{\sqrt{2\pi\sigma^2_{\mu|\text{x}}}}\exp\left[-\frac{1}{2\sigma^2_{\mu|\text{x}}}(\mu-\mu_{\mu|\text{x}})^2\right]\cdots\text{Gaussian}\\[0.3cm] \rightarrow \hat \mu=E[\mu|\text{x}]=\mu_{\mu|\text{x}}=\left(\frac{1}{\sigma^2}\sum^{N-1}_{n=0}x[n]+\frac{\mu_1}{\sigma^2_1}\right)\left(\frac{1}{\frac{N}{\sigma^2}+\frac{1}{\sigma^2_1}}\right)\\[0.3cm] \therefore \hat \mu=\frac{\sigma^2_1\sum^{N-1}_{n=0}x[n]+\mu_1\sigma^2}{N\sigma^2_1+\sigma^2}

P2

Suppose our observation YY is Poisson random variable with rate θ\theta,

p(yθ)=θ2eθyp(y|\theta)=\frac{\theta}{2}e^{-\theta|y|}

where θ\theta is unknown with a prior density

p(θ)={1θ  1θe0  otherwisep(\theta)=\begin{cases} \frac{1}{\theta}\;1\leq\theta\leq e\\0\;\text{otherwise}\end{cases}
  1. Find the MAP estimator of θ\theta
  2. Find MMSE estimator of θ\theta

Solution

i) maximizing lnp(yθ)+lnp(θ)=ln[θN2Nexp[θn=0N1(y[n])]]+ln1θ=NlnθNln2θn=0N1y[n]lnθθ(lnp(yθ)+lnp(θ))=Nθn=0N1y[n]1θ=0θ^=N1n=0N1y[n]\text{i) maximizing }\ln p(\text{y}|\theta)+\ln p(\theta)\\[0.2cm] =\ln\left[\frac{\theta^N}{2^N}\exp\left[-\theta\cdot\sum^{N-1}_{n=0}(y[n])\right]\right]+\ln\frac{1}{\theta}\\[0.2cm] =N\ln\theta-N\ln 2-\theta\sum^{N-1}_{n=0}|y[n]|-\ln\theta\\[0.2cm] \frac{\partial}{\partial\theta}(\ln p(\text{y}|\theta)+\ln p(\theta))=\frac{N}{\theta}-\sum^{N-1}_{n=0}|y[n]|-\frac{1}{\theta}=0\\[0.2cm] \rightarrow \hat \theta=\frac{N-1}{\sum^{N-1}_{n=0}|y[n]|}
ii) p(θy)=p(yθ)p(θ)p(yθ)p(θ)dθ={θN12NeθyθN12Neθydθ1θe0otherwise={12eθy1y(eeyey)1θe0otherwiseE(θy)=1θθy2eθydθ1eeyey1θθy2eθydθ=1e(θ12eθy)dθ+1θ12eθydθ=12(eeeyey)12y(eeyey)=e1eyey2(eyeey)12[n]=θ^MMSE\text{ii) }p(\theta|y)=\frac{p(\text{y}|\theta)p(\theta)}{\int p(\text{y}|\theta)p(\theta)d\theta}\\[0.3cm] =\begin{cases} \frac{\frac{\theta^{N-1}}{2^N}e^{-\theta\sum|y|}}{\int\frac{\theta^{N-1}}{2^N}e^{-\theta\sum|y|}d\theta}\quad1\leq\theta\leq e\\ 0\quad\text{otherwise}\end{cases}\\[0.4cm] =\begin{cases}\frac{\frac{1}{2}e^{-\theta\sum|y|}}{-\frac{1}{\sum|y|}\left(e^{-e\sum|y|}-e^{-\sum|y|}\right)}\quad 1\leq\theta\leq e\\ 0\quad\text{otherwise}\end{cases}\\[0.4cm] \rightarrow E(\theta|\text{y})=-\int^\theta_1\theta\cdot\frac{\sum|y|}{2}\cdot e^{-\theta\sum|y|}d\theta\cdot\frac{1}{e^{-e\sum|y|}-e^{-\sum|y|}}\\[0.4cm] -\int^\theta_1\theta\cdot\frac{\sum|y|}{2}\cdot e^{-\theta\sum|y|}d\theta=\int^e_1\left(-\theta\cdot \frac{1}{2}e^{-\theta\sum|y|}\right)d\theta+\int^\theta_1\frac{1}{2}e^{-\theta\sum|y|}d\theta\\[0.4cm] =-\frac{1}{2}\left(e\cdot e^{-e\sum|y|}-e^{-\sum|y|}\right)-\frac{1}{2\sum|y|}\left(e^{-e\sum|y|}-e^{-\sum|y|}\right)\\[0.3cm] =\frac{e^{1-e\sum|y|}-e^{-\sum|y|}}{2(e^{-\sum|y|}-e^{-e\sum|y|})}-\frac{1}{2\sum[n]}=\hat\theta\cdots\text{MMSE}

P3

The data x[n]x[n] for n=0,1,,N1n=0,1,\dots,N-1 are observed, each sample having the conditional PDF

p(x[n]θ)={exp[(x[n]θ)]x[n]>θ0x[n]<θp(x[n]|\theta)=\begin{cases}\exp[-(x[n]-\theta)]\quad x[n]>\theta\\ 0\quad x[n]<\theta\end{cases}

and conditioned on θ\theta the observations are independent. The prior PDF is

p(θ)={exp(θ)θ>00θ<0p(\theta)=\begin{cases}\exp(-\theta)\quad\theta>0\\0\quad\theta<0\end{cases}

Find the MMSE estimator of θ\theta.

Solution

p(xθ)=exp[n=0N1x[n]+Nθ]u[min(x[n])θ]p(θ)=exp(θ)u[θ]p(xθ)p(θ)=exp[n=0N1x[n]+(N1)θ]u[min(x[n])θ]u[θ]p(θx)=p(xθ)p(θ)p(xθ)p(θ)dθ=exp[(N1)θ]u[min(x[n])θ]u[θ]0minx[n]exp[(N1)θ]dθ=e(N1)θu[min(x[n])θ]u[θ]1N1e(N1)minx[n]1E[θx]=0minx[n]θ(N1)e(N1)θe(N1)minx[n]1dθ=N1e(N1)minx[n]10minx[n]θe(N1)θdθ=N1e(N1)minx[n]1[(θN1e(N1)θ)0minx[n]0minx[n]1N1e(N1)θdθ]=N1e(N1)minx[n]1[minx[n]N1e(N1)minx[n]1(N1)2e(N1)minx[n]+1(N1)2]=minx[n]e(N1)minx[n]e(N1)minx[n]1e(N1)minx[n](N1)(e(N1)minx[n]1)+1(N1)(e(N1)minx[n]1)=minx[n]e(N1)minx[n]e(N1)minx[n]11N1=minx[n]1e(N1)minx[n]1N1p(\text{x}|\theta)=\exp\left[-\sum^{N-1}_{n=0}x[n]+N\theta\right]\cdot u[\min(x[n])-\theta]\\[0.2cm] p(\theta)=\exp(-\theta)u[\theta]\\[0.3cm] \rightarrow p(\text{x}|\theta)\cdot p(\theta)=\exp\left[-\sum^{N-1}_{n=0}x[n]+(N-1)\theta\right]\cdot u[\min(x[n])-\theta]u[\theta]\\[0.3cm] \rightarrow p(\theta|\text{x})=\frac{p(\text{x}|\theta)p(\theta)}{\int p(\text{x}|\theta)p(\theta)d\theta}=\frac{\exp[(N-1)\theta]u[\min(x[n])-\theta]u[\theta]}{\int^{\min x[n]}_0\exp[(N-1)\theta]d\theta}\\[0.3cm] =\frac{e^{(N-1)\theta}u[\min(x[n])-\theta]u[\theta]}{\frac{1}{N-1}e^{(N-1)\min x[n]}-1}\\[0.3cm] \rightarrow E[\theta|\text{x}]=\int^{\min x[n]}_0\theta\cdot \frac{(N-1)\cdot e^{(N-1)\theta}}{e^{(N-1)\min x[n]}-1}d\theta\\[0.3cm] =\frac{N-1}{e^{(N-1)\min x[n]}-1}\int^{\min x[n]}_0\theta\cdot e^{(N-1)\theta}d\theta\\[0.3cm] =\frac{N-1}{e^{(N-1)\min x[n]}-1}\left[\left(\frac{\theta}{N-1}e^{(N-1)\theta}\right)|^{\min x[n]}_0-\int^{\min x[n]}_0 \frac{1}{N-1}e^{(N-1)\theta}d\theta\right]\\[0.3cm] =\frac{N-1}{e^{(N-1)\min x[n]}-1}\left[\frac{\min x[n]}{N-1}e^{(N-1)\min x[n]}-\frac{1}{(N-1)^2}e^{(N-1)\min x[n]}+\frac{1}{(N-1)^2}\right]\\[0.3cm] =\frac{\min x[n]e^{(N-1) \min x[n]}}{e^{(N-1) \min x[n]}-1}-\frac{e^{(N-1)\min x[n]}}{(N-1)\left(e^{(N-1)\min x[n] }-1\right)}+\frac{1}{(N-1)(e^{(N-1)\min x[n]}-1)}\\[0.3cm] =\frac{\min x[n]e^{(N-1)\min x[n]}}{e^{(N-1)\min x[n]}-1}-\frac{1}{N-1}\\[0.3cm] =\frac{\min x[n]}{1-e^{-(N-1)\min x[n]}}-\frac{1}{N-1}
profile
AI, Security

0개의 댓글