<Python> Pandas 심화

Google 아니고 Joogle·2023년 3월 28일
0

Python

목록 보기
3/5
post-thumbnail

✅조건으로 검색

1️⃣masking 연산

  • query문으로도 가능
import numpy as np
import pandas as pd

df=pd.DataFrame(np.random.rand(5,2), columns=["A", "B"]
df[df['A']>0.5 & df['B']<0.3]

--> query문으로도 가능
df.query("A > 0.5 and B <0.3")

2️⃣문자열 검색

df["Animal"].str.contains ("Cat")
df.Animal.str.match("Cat")

✅함수로 데이터 처리

  • apply() 를 통해서 함수로 데이터를 다루기
df=pd.DataFrame(np.arange(5), column=["Num"])
def square(x) :
	return x**2
    
df["Num"].apply(square) --> Num에 제곱수 넣기
df["Square"]=df.Num.apply(lambda x:x**2) -->square 칼럼을 만들고 람다 식 이용
  • replace()
df.sex.replace({"Male" :0, "Female":1})
df.sex.replace({"Male" :0, "Female":1}, inplace=True) # 원래 값 자체를 바꿀 

✅그룹으로 묶기

  • groupby() : 간단한 집계를 넘어서서 조건부로 집계할 경우

  • aggregate() : groupby를 통해서 집계를 한 번에 계산하는 방법


칼럼별로 다른 집계 함수를 사용하고 싶을 때는 딕셔너리 형태로 표현

  • get_group() : groupby로 묶인 데이터에서 key값으로 데이터를 가져올 수 있음
profile
Born to be happy, Not perfect 🤍

0개의 댓글