from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit(df['A'])
le.fit_transform(df["A"])
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
mms.fit(df)
df_mms = mms.transform(df)
df_mms
mms.fit_transform(df_mms)
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
ss.fit(df)
df_ss = ss.transform(df)
df_ss
ss.fit_transform(df)
from sklearn.preprocessing import RobustScaler
rs = RobustScaler()
df_rs = rs.fit_transform(df)
df_scaler["MinMax"] = mm.fit_transform(df)
df_scaler["Standard"] = ss.fit_transform(df)
df_scaler["Robust"] = rs.fit_transform(df)
df_scaler

import seaborn as sns
import matplotlib.pyplot as plt
sns.set_theme(style = 'whitegrid')
plt.figure(figsize = (16, 6))
sns.boxplot(data = df_scaler, orient = "h")

이 글은 제로베이스 데이터 취업 스쿨의 강의 자료 일부를 발췌하여 작성되었습니다