Introduction to Probability and Probability Distributionn - Week 1

HO SEUNG YOON·2024년 3월 25일
0
post-thumbnail

Lesson 1 - Introduction to Probability

What is Probability?



What is Probability? - Dice Example

Complement of Probability

Sum of Probabilities (Disjoint Events)

Sum of Probabilities (Joint Events)

Independence

  • P(AB)=P(A)×P(B)P( A\cap B) = P(A)\times P(B)

Birthday problem

  • Among 30 people the probability of everyone has different birthday
    • 9 people case
    • Drops very steeply

Conditional Probability - Part 1

  • information : The probability that today is humid

    • condition : yesterday was raining

    probability changes according to the existence of condition

  • P(AB)=P(A)×P(B)P( A\cap B) = P(A)\times P(B)

    • when P(A)P(A) and P(B)P(B) independent

    • The General Product Rule

      P(AB)=P(A)P(BA)P(A \cap B) = P(A)*P(B|A)

      • P(BA)=P(B)P(B|A) = P(B) when independent!

Conditional Probability - Part 2

  • P(SR)=P(S)×P(RS)P(S \cap R) = P(S) \times P(R|S)
    = 0.4 ×\times 0.8
    = 0.32

Bayes Theorem - Intuition

Bayes Theorem - Mathematical Formula

Bayes Theorem - Spam example

Bayes Theorem - Prior and Posterior

  • PRIOR : original probability, P(A)

  • EVENT : gives information about the probability, P(E)

  • POSTERIOR : with them can calculate P(A/E)

    • always better estimation than the prior

Bayes Theorem - The Naive Bayes Model

Probability in Machine Learning

Lesson 2 - Probability Distribution

Random Variables

  • Discrete random variables(이산확률변수)
  • Continuous random variables(연속확률변수)

Probability Distributions (Discrete)

  • 1개 확률 (38){3 \choose 8}

  • Probability Mass Function(확률 질량 함수)

    • 모든 이산확률 변수는 PMF로 모델링 가능
  • PMF의 조건

  • 모든 랜덤 변수를 나타내는 단이 모델?
    • Binomial distribution(이항 분포)

Binomial Distribution

  • why PMF has symmetrical shape

  • Binomial distribution 수식의 n, p를 파라미터로 본다

  • answer is (53)163562{5\choose3}\frac{1}{6}^3\frac{5}{6}^2

  • 이항분포와 베르누이분포

    • 시행횟수의 차이다
    • 베르누이 분포는 이항분포의 특수한 경우이다

(Optional) Binomial Coefficient

Bernoulli Distribution

  • 베르누이 분포는 한개의 파라미터만을 갖는다. 그것은 성공 확률인 p.

Probability Distributions (Continuous)

  • we did discrete distribution 이산분포
    • 불연속적인, 유한하고 셀 수 있는 확률분포

  • near zero

  • 더 정밀하게! little more granular

  • 연속 확률 분포 continuous probability distribution
    • infinite로 쪼개면 면적이 1이 되는 연속 확률 분포 형태가 됨

Probability Density Function

  • PDF : When f(x)f(x) takes particular value, probability always 0

Cumulative Distribution Function

  • 누적 분포 함수

  • CDF from PDF

  • uses capital F as formula
    • for continuous variables, because there is no point of mass, you get continuous function

Uniform Distribution

  • 균등 분포

  • 아래 면적의 합은 1이어야 하므로

Normal Distribution

  • 정규 분포;가우시안 분포

  • n이 매우 클때 가우시안 분포로 이항 분포를 근사할approxmiate 수 있다.

  • move to right
  • subtracting

  • thiken
  • divide exponent

  • area is not same
  • divide by area

  • μ\mu = mean 데이터의 평균
  • σ\sigma = standard deviation 표준편차

  • XN(μ,σ2)X\sim{N(\mu,\sigma^2)}
    • \sim is similar
    • sigma squared called 분산variance

  • 정규분포

  • 많은 ML에서는 변수가 정규분포를 따른다고 가정

(Optional) Chi-Squared Distribution

Sampling from a Distribution

0개의 댓글

관련 채용 정보