ML

1.Gradient Boosting, Histogram-based Gradient Boosting

post-thumbnail

2.LightGBM 의 동작 방식 : GOSS, EFB

post-thumbnail

3.Loss : quantile loss, huber loss, squared loss, absolute loss

post-thumbnail

4.[으쌰복습, 올라잇팀] Ordinal Encoding

post-thumbnail

5.보팅(soft, hard voting), 경사하강법, XGBoost와 LightGBM 비교

post-thumbnail

6.[천리길스터디] 앙상블

post-thumbnail

7.sklearn.model_selection : cross_validate, cross_val_predict, cross_val_score 공부

post-thumbnail

8.Decision Tree

post-thumbnail

9.분류 모델의 평가 지표(Confusion Matrix, Accuracy, Precision, Recall, Trade-off, 임계값 Threshold, ROC-Curve, AUC)

post-thumbnail