brandonnam.log
로그인
brandonnam.log
로그인
ML 4: Multiple Features
brandon
·
2023년 7월 17일
팔로우
0
ML
0
SupervisedML
목록 보기
4/27
1. Multivariable Linear Regression
vector is just an array.
dot product is multiplying by pair.
multivariate regression refers to something else.
subscript for the specific feature, superscript for specific training data set.
2. Vectorization
Making my code deal with vectors instead of multiplying each w by x.
Done in NumPy library.
Codewise,
Without Vectorization:
With Vectorization:
Vectorization used in Gradient Descent
Just subtract the two vectors.
Multivariable Gradient Descent
Alternative to Gradient Descent
using linear algebra to solve for W and B:
normal equation
.
brandon
everything happens for a reason
팔로우
이전 포스트
ML 3: Gradient Descent
다음 포스트
ML 5: Gradient Descent in Practice
1개의 댓글
댓글 작성
이태균
2023년 7월 17일
저도 개발자인데 같이 교류 많이 해봐요 ㅎㅎ! 서로 화이팅합시다!
답글 달기
저도 개발자인데 같이 교류 많이 해봐요 ㅎㅎ! 서로 화이팅합시다!