MLP_3 (Multilayer Perceptron)

창슈·2025λ…„ 4μ›” 11일

Deep Learning

λͺ©λ‘ 보기
13/16
post-thumbnail

MLP의 μ€‘μš” κ°œλ…λ“€

일반적으둜 ν›ˆλ ¨ μƒ˜ν”Œμ˜ κ°œμˆ˜λŠ” μ•„μ£Ό λ§Žλ‹€.

  • ν’€λ°°μΉ˜ ν•™μŠ΅ (full batch learning)
  • 온라인 ν•™μŠ΅ (online learning)
  • λ―Έλ‹ˆλ°°μΉ˜ ν•™μŠ΅ (mini batch learning)


πŸ“— ν’€λ°°μΉ˜ ν•™μŠ΅

ν’€ 배치 ν•™μŠ΅μ€ 신경망 ν•™μŠ΅μ—μ„œ λͺ¨λ“  ν›ˆλ ¨ μƒ˜ν”Œμ„ ν•œ λ²ˆμ— μ²˜λ¦¬ν•˜λŠ” 방식이닀.
이 방법은 평균 κ·Έλž˜λ””μ–ΈνŠΈλ₯Ό κ³„μ‚°ν•˜μ—¬ κ°€μ€‘μΉ˜λ₯Ό μ—…λ°μ΄νŠΈν•˜λŠ” λ°©μ‹μœΌλ‘œ μ§„ν–‰λœλ‹€.
ν•˜μ§€λ§Œ, λ§Žμ€ μƒ˜ν”Œμ„ ν•œλ²ˆμ— μ²˜λ¦¬ν•˜κΈ° λ•Œλ¬Έμ— μ‹œκ°„μ΄ 많이 걸리고 계산이 느릴 수 μžˆλ‹€.

  1. κ°€μ€‘μΉ˜μ™€ λ°”μ΄μ–΄μŠ€λ₯Ό 0λΆ€ν„° 1 μ‚¬μ΄μ˜ λ‚œμˆ˜λ‘œ μ΄ˆκΈ°ν™”.

  2. μˆ˜λ ΄ν•  λ•ŒκΉŒμ§€ λͺ¨λ“  κ°€μ€‘μΉ˜μ— λŒ€ν•΄ λ‹€μŒμ„ 반볡.

  3. λͺ¨λ“  ν›ˆλ ¨ μƒ˜ν”Œμ„ μ²˜λ¦¬ν•˜μ—¬ 평균 κ·Έλž˜λ””μ–ΈνŠΈ βˆ‚Eβˆ‚w=1Nβˆ‘k=1Nβˆ‚Ekβˆ‚w\frac{\partial E}{\partial w} = \frac{1}{N} \sum_{k=1}^{N} \frac{\partial E_k}{\partial w}

  4. κ°€μ€‘μΉ˜ μ—…λ°μ΄νŠΈ: w(t+1)=w(t)βˆ’Ξ·β‹…βˆ‚Eβˆ‚ww(t+1) = w(t) - \eta \cdot \frac{\partial E}{\partial w}


πŸ“˜ 온라인 ν•™μŠ΅

온라인 ν•™μŠ΅μ€ ν›ˆλ ¨ μƒ˜ν”Œ μ€‘μ—μ„œ λ¬΄μž‘μœ„λ‘œ ν•˜λ‚˜μ˜ μƒ˜ν”Œμ„ μ„ νƒν•˜μ—¬ κ°€μ€‘μΉ˜λ₯Ό μ—…λ°μ΄νŠΈν•˜λŠ” 방식이닀.
이 방법은 계산이 쉽고 μƒ˜ν”Œλ§ˆλ‹€ λΉ λ₯΄κ²Œ ν•™μŠ΅μ΄ κ°€λŠ₯ν•˜μ§€λ§Œ, μƒ˜ν”Œ 선택에 따라 μš°μ™•μ’Œμ™•ν•˜κΈ° 쉽닀.

  1. κ°€μ€‘μΉ˜μ™€ λ°”μ΄μ–΄μŠ€λ₯Ό 0λΆ€ν„° 1 μ‚¬μ΄μ˜ λ‚œμˆ˜λ‘œ μ΄ˆκΈ°ν™”.

  2. μˆ˜λ ΄ν•  λ•ŒκΉŒμ§€ λͺ¨λ“  κ°€μ€‘μΉ˜μ— λŒ€ν•΄ 반볡.

  3. ν›ˆλ ¨ μƒ˜ν”Œ μ€‘μ—μ„œ λ¬΄μž‘μœ„λ‘œ i번째 μƒ˜ν”Œμ„ 선택.

  4. κ·Έλž˜λ””μ–ΈνŠΈ 계산: βˆ‚Eβˆ‚w\frac{\partial E}{\partial w}

  5. κ°€μ€‘μΉ˜ μ—…λ°μ΄νŠΈ: $w(t+1) = w(t) - \eta \cdot \frac{\partial E}


πŸ“™ λ―Έλ‹ˆλ°°μΉ˜ ν•™μŠ΅

λ―Έλ‹ˆλ°°μΉ˜ ν•™μŠ΅μ€ ν’€ λ°°μΉ˜μ™€ 온라인 ν•™μŠ΅μ˜ 쀑간 ν˜•νƒœλ‘œ, ν›ˆλ ¨ μƒ˜ν”Œμ„ Bκ°œμ”© λ¬Άμ–΄μ„œ μ²˜λ¦¬ν•˜λŠ” 방식이닀.
λΉ λ₯΄κ²Œ κ³„μ‚°ν•˜λ©΄μ„œλ„ μ•ˆμ •μ μΈ ν•™μŠ΅μ„ ν•  수 μžˆλ‹€.

  1. κ°€μ€‘μΉ˜μ™€ λ°”μ΄μ–΄μŠ€λ₯Ό 0λΆ€ν„° 1 μ‚¬μ΄μ˜ λ‚œμˆ˜λ‘œ μ΄ˆκΈ°ν™”.

  2. μˆ˜λ ΄ν•  λ•ŒκΉŒμ§€ 반볡.

  3. ν›ˆλ ¨ μƒ˜ν”Œ μ€‘μ—μ„œ λ¬΄μž‘μœ„λ‘œ B개의 μƒ˜ν”Œμ„ 선택.

  4. κ·Έλž˜λ””μ–ΈνŠΈ 계산: βˆ‚Eβˆ‚w=1Bβˆ‘k=1Bβˆ‚Ekβˆ‚w\frac{\partial E}{\partial w} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial E_k}{\partial w}

  5. κ°€μ€‘μΉ˜ μ—…λ°μ΄νŠΈ: w(t+1)=w(t)βˆ’Ξ·β‹…βˆ‚Eβˆ‚ww(t+1) = w(t) - \eta \cdot \frac{\partial E}{\partial w}

πŸ“¦ λ―Έλ‹ˆλ°°μΉ˜ μ‹€μŠ΅ code

import numpy as np
import tensorflow as tf

# 데이터λ₯Ό ν•™μŠ΅ 데이터와 ν…ŒμŠ€νŠΈ λ°μ΄ν„°λ‘œ λ‚˜λˆˆλ‹€.
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
data_size = x_train.shape[0]
batch_size = 12  # 배치 크기

# 배치 크기 많큼 λžœλ€ν•˜κ²Œ 선택
selected = np.random.choice(data_size, batch_size)
print(selected)
x_batch = x_train[selected]
y_batch = y_train[selected]

# λ―Έλ‹ˆ 배치 μ‚¬μš©ν•  경우 MSE ν•¨μˆ˜
def MSE(t, y):
    size = y.shape[0]
    return 0.5 * np.sum((y - t) ** 2) / size
[58298 3085 27743 33570 35343 47286 18267 25804 4632 10890 44164 18822]

πŸ–‡οΈ λ―Έλ‹ˆλ°°μΉ˜ ν–‰λ ¬λ‘œ κ΅¬ν˜„ν•˜κΈ°

XOR μ—°μ‚° ν•™μŠ΅μ„ μœ„ν•œ 신경망 섀계:

- XOR 연산을 ν•™μŠ΅ν•  수 μžˆλŠ” μ‹ κ²½λ§μ˜ μ˜ˆμ‹œλ‘œ, μž…λ ₯μΈ΅κ³Ό 은닉측을 κ°€μ§„ λ„€νŠΈμ›Œν¬κ°€ κ΅¬μ„±λœλ‹€. - 각 μž…λ ₯ κ°’ $x_1, x_2$와 κ°€μ€‘μΉ˜ $w_1, w_2, w_3, w_4,$ λ°”μ΄μ–΄μŠ€ $b_1, b_2$λŠ” μ‹ κ²½λ§μ˜ 연결을 λ‚˜νƒ€λ‚Έλ‹€.

행렬계산:

  • Z1Z_1: 은닉측 μœ λ‹›μ΄ 받은 μž…λ ₯의 총합을 λ‚˜νƒ€λ‚΄λŠ” ν–‰λ ¬
  • A1A_1: ν™œμ„±ν™” ν•¨μˆ˜ 적용 ν›„ μ€λ‹‰μΈ΅μ˜ 좜λ ₯
  • Z2Z_2: 좜λ ₯μΈ΅ μœ λ‹›μ΄ 받은 μž…λ ₯의 총합
  • YY: 좜λ ₯측의 ν™œμ„±ν™” ν•¨μˆ˜ 적용 ν›„ μ΅œμ’… 좜λ ₯

  • Z1Z_1은 은닉측 μœ λ‹›μ΄ λ°›λŠ” μž…λ ₯의 총합을 λ‚˜νƒ€λ‚΄λŠ” ν–‰λ ¬
Z1=XΓ—W+B=[x1(1)x2(1)x1(2)x2(2)x1(3)x2(3)x1(4)x2(4)][w1w2w3w4]+[b1b2]Z_1 = X \times W + B = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} \\ x_1^{(2)} & x_2^{(2)} \\ x_1^{(3)} & x_2^{(3)} \\ x_1^{(4)} & x_2^{(4)} \end{bmatrix} \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \end{bmatrix} + \begin{bmatrix} b_1 & b_2 \end{bmatrix}
  • A1A_1은 Z1Z_1을 ν™œμ„±ν™”ν•¨μˆ˜μ— λŒ€μž…ν•œ ν›„μ˜ ν–‰λ ¬
A1=f(Z1)=[f(z1(1))f(z1(1))f(z1(2))f(z1(2))f(z1(3))f(z1(3))f(z1(4))f(z1(4))]A_1 = f(Z_1) = \begin{bmatrix} f(z_1^{(1)}) & f(z_1^{(1)}) \\ f(z_1^{(2)}) & f(z_1^{(2)}) \\ f(z_1^{(3)}) & f(z_1^{(3)}) \\ f(z_1^{(4)}) & f(z_1^{(4)}) \end{bmatrix}
  • Z2Z_2λŠ” 좜λ ₯μΈ΅ μœ λ‹›μ΄ λ°›λŠ” μž…λ ₯의 총합을 λ‚˜νƒ€λ‚΄λŠ” ν–‰λ ¬
Z2=A1Γ—W2+B2=[h1(1)h2(1)h1(2)h2(2)h1(3)h2(3)h1(4)h2(4)][w5w6]+[b3]=[zy(1)zy(2)zy(3)zy(4)]Z_2 = A_1 \times W_2 + B_2 = \begin{bmatrix} h_1^{(1)} & h_2^{(1)} \\ h_1^{(2)} & h_2^{(2)} \\ h_1^{(3)} & h_2^{(3)} \\ h_1^{(4)} & h_2^{(4)} \end{bmatrix} \begin{bmatrix} w_5 \\ w_6 \end{bmatrix} + \begin{bmatrix} b_3 \end{bmatrix} = \begin{bmatrix} z_y^{(1)} \\ z_y^{(2)} \\ z_y^{(3)} \\ z_y^{(4)} \end{bmatrix}
  • YYλŠ” Z2Z_2에 좜λ ₯측의 ν™œμ„±ν™”ν•¨μˆ˜λ₯Ό μ μš©ν•˜μ—¬ 얻은 좜λ ₯μΈ΅ μœ λ‹›μ˜ 좜λ ₯
Y=f(Z2)=[f(zy(1))f(zy(2))f(zy(3))f(zy(4))]=[y(1)y(2)y(3)y(4)]Y = f(Z_2) = \begin{bmatrix} f(z_y^{(1)}) \\ f(z_y^{(2)}) \\ f(z_y^{(3)}) \\ f(z_y^{(4)}) \end{bmatrix} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \\ y^{(4)} \end{bmatrix}

πŸ–‡οΈ λ―Έλ‹ˆλ°°μΉ˜ 였차 μ—­μ „νŒŒ

  • Loss Function: E=12(Yβˆ’T)T(Yβˆ’T)\quad E = \frac{1}{2} (Y - T)^T (Y - T)
  • Activation Function: Y=f(z)=11+eβˆ’z\quad Y = f(z) = \frac{1}{1 + e^{-z}}

β‘  βˆ‚Eβˆ‚Y=(Yβˆ’T)=[y(1)βˆ’t(1)y(2)βˆ’t(2)y(3)βˆ’t(3)y(4)βˆ’t(4)]layer2_error\quad \frac{\partial E}{\partial Y} = (Y - T) = \begin{bmatrix} y^{(1)} - t^{(1)} \\ y^{(2)} - t^{(2)} \\ y^{(3)} - t^{(3)} \\ y^{(4)} - t^{(4)} \end{bmatrix} \quad \text{layer2\_error}

β‘‘ βˆ‚Yβˆ‚Z2=Y∘(1βˆ’Y)=[y(1)β‹…(1βˆ’y(1))y(2)β‹…(1βˆ’y(2))y(3)β‹…(1βˆ’y(3))y(4)β‹…(1βˆ’y(4))]actf_deriv(layer2)\quad \frac{\partial Y}{\partial Z_2} = Y \circ (1 - Y) = \begin{bmatrix} y^{(1)} \cdot (1 - y^{(1)}) \\ y^{(2)} \cdot (1 - y^{(2)}) \\ y^{(3)} \cdot (1 - y^{(3)}) \\ y^{(4)} \cdot (1 - y^{(4)}) \end{bmatrix} \quad \text{actf\_deriv(layer2)}

β‘’ βˆ‚Z2βˆ‚W2=(A1)T=[a1(1)a1(2)a1(3)a1(4)a2(1)a2(2)a2(3)a2(4)]layer1.T\quad \frac{\partial Z_2}{\partial W_2} = (A_1)^T = \begin{bmatrix} a_1^{(1)} & a_1^{(2)} & a_1^{(3)} & a_1^{(4)} \\ a_2^{(1)} & a_2^{(2)} & a_2^{(3)} & a_2^{(4)} \end{bmatrix} \quad \text{layer1.T}

βˆ‚Eβˆ‚W2=(A1)T=[(y(1)βˆ’t(1))β‹…y(1)β‹…(1βˆ’y(1))(y(2)βˆ’t(2))β‹…y(2)β‹…(1βˆ’y(2))(y(3)βˆ’t(3))β‹…y(3)β‹…(1βˆ’y(3))(y(4)βˆ’t(4))β‹…y(4)β‹…(1βˆ’y(4))]\frac{\partial E}{\partial W_2} = (A_1)^T = \begin{bmatrix} (y^{(1)} - t^{(1)}) \cdot y^{(1)} \cdot (1 - y^{(1)}) \\ (y^{(2)} - t^{(2)}) \cdot y^{(2)} \cdot (1 - y^{(2)}) \\ (y^{(3)} - t^{(3)}) \cdot y^{(3)} \cdot (1 - y^{(3)}) \\ (y^{(4)} - t^{(4)}) \cdot y^{(4)} \cdot (1 - y^{(4)}) \end{bmatrix}

κ°€μ€‘μΉ˜ μ—…λ°μ΄νŠΈ: w5(t+1)=w5(t)βˆ’Ξ·β‹…βˆ‚Eβˆ‚w5\quad w_5(t+1) = w_5(t) - \eta \cdot \frac{\partial E}{\partial w_5}

μƒ˜ν”Œμ΄ 4개 μ΄λ―€λ‘œ 4둜 λ‚˜λˆ„μ–΄μ„œ 평균 gradientλ₯Ό κ³„μ‚°ν•˜κ³  여기에 ν•™μŠ΅λ₯ μ„ κ³±ν•˜μ—¬ w5w_5λ₯Ό μ—…λ°μ΄νŠΈν•œλ‹€.


πŸ“¦ λ―Έλ‹ˆλ°°μΉ˜μ˜ κ΅¬ν˜„

import numpy as np

# μ‹œκ·Έλͺ¨μ΄λ“œ ν•¨μˆ˜
def actf(x):
    return 1 / (1 + np.exp(-x))

# μ‹œκ·Έλͺ¨μ΄λ“œ ν•¨μˆ˜μ˜ λ―ΈλΆ„μΉ˜
def actf_deriv(x):
    return x * (1 - x)

# μž…λ ₯μœ λ‹›, μ€λ‹‰μœ λ‹› 및 좜λ ₯μœ λ‹›μ˜ 개수
inputs, hiddens, outputs = 2, 2, 1
learning_rate = 0.5

# ν›ˆλ ¨ μž…λ ₯κ³Ό 좜λ ₯
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
T = np.array([[0], [1], [1], [0]])

# κ°€μ€‘μΉ˜λ₯Ό –1.0μ—μ„œ 1.0 μ‚¬μ΄μ˜ λ‚œμˆ˜λ‘œ μ΄ˆκΈ°ν™”ν•œλ‹€.
W1 = 2 * np.random.random((inputs, hiddens)) - 1
W2 = 2 * np.random.random((hiddens, outputs)) - 1
B1 = np.zeros(hiddens)
B2 = np.zeros(outputs)
# 순방ν–₯ μ „νŒŒ 계산
def predict(x):
    layer0 = x  # μž…λ ₯을 layer0에 λŒ€μž…ν•œλ‹€.
    Z1 = np.dot(layer0, W1) + B1  # ν–‰λ ¬μ˜ 곱을 κ³„μ‚°ν•œλ‹€.
    layer1 = actf(Z1)  # ν™œμ„±ν™” ν•¨μˆ˜λ₯Ό μ μš©ν•œλ‹€.
    Z2 = np.dot(layer1, W2) + B2  # ν–‰λ ¬μ˜ 곱을 κ³„μ‚°ν•œλ‹€.
    layer2 = actf(Z2)  # ν™œμ„±ν™” ν•¨μˆ˜λ₯Ό μ μš©ν•œλ‹€.
    return layer0, layer1, layer2

# μ—­λ°©ν–₯ μ „νŒŒ 계산
def fit():
    global W1, W2, B1, B2
    for i in range(60000):
        layer0, layer1, layer2 = predict(X)
        layer2_error = layer2 - T
        layer2_delta = layer2_error * actf_deriv(layer2)
        layer1_error = np.dot(layer2_delta, W2.T)
        layer1_delta = layer1_error * actf_deriv(layer1)

        W2 += -learning_rate * np.dot(layer1.T, layer2_delta) / 4.0
        W1 += -learning_rate * np.dot(layer0.T, layer1_delta) / 4.0
        B2 += -learning_rate * np.sum(layer2_delta, axis=0) / 4.0
        B1 += -learning_rate * np.sum(layer1_delta, axis=0) / 4.0
# ν…ŒμŠ€νŠΈ ν•¨μˆ˜
def test():
    for x, y in zip(X, T):
        x = np.reshape(x, (1, -1))  # ν•˜λ‚˜μ—¬λ„ 2차원 ν˜•νƒœμ΄μ–΄μ•Ό ν•œλ‹€.
        layer0, layer1, layer2 = predict(x)
        print(x, y, layer2)

# ν•™μŠ΅ 및 ν…ŒμŠ€νŠΈ μ‹€ν–‰
fit()
test()
[[0 0]] [0] [[0.0124954]]
[[0 1]] [1] [[0.98683933]]
[[1 0]] [1] [[0.9869228]]
[[1 1]] [0] [[0.01616628]]

🏫 ν•™μŠ΅λ₯ 

learning rate

W←Wβˆ’Ξ·β‹…βˆ‚E(W)βˆ‚WW ← W - \eta \cdot \frac{\partial E(W)}{\partial W}
  • ν•™μŠ΅λ₯ μ€ 신경망 ν•™μŠ΅μ—μ„œ κ°€μ€‘μΉ˜λ₯Ό μ–Όλ§ˆλ‚˜ 크게 λ³€κ²½ν• μ§€ κ²°μ •ν•˜λŠ” 값이닀.

  • λ„ˆλ¬΄ 큰 ν•™μŠ΅λ₯ μ€ μ˜€λ²„μŠˆνŒ…μ„ λ°œμƒμ‹œμΌœ μ΅œμ μ μ„ μ§€λ‚˜μΉ˜κ²Œ 될 수 μžˆλ‹€.

  • λ„ˆλ¬΄ μž‘μ€ ν•™μŠ΅λ₯ μ€ ν•™μŠ΅ 속도가 λŠλ €μ§€λ©°, μ§€μ—­ μ΅œμ†Œκ°’μ— 빠질 μœ„ν—˜μ΄ μžˆλ‹€.

  • μ μ ˆν•œ ν•™μŠ΅λ₯ μ„ μ„€μ •ν•˜λ©΄ μ΅œμ ν™” 과정이 μ›ν™œν•˜κ²Œ μ§„ν–‰λœλ‹€.

momentum

  • λͺ¨λ©˜ν…€μ€ 이전 κ°€μ€‘μΉ˜ λ³€ν™”λŸ‰μ„ λ°˜μ˜ν•˜μ—¬ 가속도λ₯Ό μΆ”κ°€ν•˜λŠ” 방법이닀.

  • 이 방법을 톡해 κ°€μ€‘μΉ˜κ°€ μ§€μ—­ μ΅œμ†Ÿκ°’μ„ λ²—μ–΄λ‚˜ μ „μ—­ μ΅œμ†Ÿκ°’μ„ μ°ΎλŠ” 데 도움이 λœλ‹€.

    Wt+1=Wtβˆ’Ξ·β‹…βˆ‚Eβˆ‚W+momentumβˆ—WtW_{t+1} = W_t - \eta \cdot \frac{\partial E}{\partial W} + momentum^*W_t


Adagrad

  • κ°€λ³€ ν•™μŠ΅λ₯ μ„ μ‚¬μš©ν•˜λŠ” λ°©λ²•μœΌλ‘œ SGD 방법을 κ°œλŸ‰ν•œ μ΅œμ ν™” 방법이닀.
  • 주된 방법은 ν•™μŠ΅λ₯  감쇠(learning rate decay)이닀.
  • AdagradλŠ” ν•™μŠ΅λ₯ μ„ 이전 λ‹¨κ³„μ˜ κΈ°μšΈκΈ°λ“€μ„ λˆ„μ ν•œ 값에 λ°˜λΉ„λ‘€ν•˜μ—¬μ„œ μ„€μ •ν•œλ‹€.
Wt+1=Wtβˆ’Ξ·β‹…1Gt+Ο΅βˆ‚Eβˆ‚WW_{t+1} = W_t - \eta \cdot \frac{1}{\sqrt{G_t+\epsilon}}\frac{\partial E}{\partial W}

RMSprop

  • Adagrad에 λŒ€ν•œ μˆ˜μ •νŒ
  • Adadelta와 μœ μ‚¬ν•˜μ§€λ§Œ κ·Έλž˜λ””μ–ΈνŠΈ λˆ„μ  λŒ€μ‹ μ— μ§€μˆ˜ 가쀑 이동 평균을 μ‚¬μš©ν•œλ‹€.
    Wt+1=Wtβˆ’Ξ·β‹…1vt+Ο΅βˆ‚Eβˆ‚WW_{t+1} = W_t - \eta \cdot \frac{1}{\sqrt{v_t+\epsilon}}\frac{\partial E}{\partial W}

Adam

  • Adaptive Moment Estimation의 μ•½μžμ΄λ‹€.
  • Adam은 기본적으둜 (RMSprop+λͺ¨λ©˜ν…€)이닀.
    ν˜„μž¬ κ°€μž₯ 인기 μžˆλŠ” μ΅œμ ν™” μ•Œκ³ λ¦¬μ¦˜ 쀑에 ν•˜λ‚˜μ΄λ‹€.


🏷️ Summary

ν•™μŠ΅ 방법과 ν•™μŠ΅λ₯ 

  • ν’€ λ°°μΉ˜λŠ” 전체 데이터λ₯Ό μ²˜λ¦¬ν•œ ν›„ κ°€μ€‘μΉ˜λ₯Ό μ—…λ°μ΄νŠΈν•˜λ©° μ•ˆμ •μ μ΄μ§€λ§Œ λŠλ¦¬λ‹€.

  • SGDλŠ” ν•˜λ‚˜μ˜ μƒ˜ν”Œλ§Œ 보고 μ—…λ°μ΄νŠΈν•˜λ―€λ‘œ λΉ λ₯΄μ§€λ§Œ λΆˆμ•ˆμ •ν•˜λ‹€.

  • λ―Έλ‹ˆ λ°°μΉ˜λŠ” κ·Έ μ€‘κ°„μœΌλ‘œ, μ—¬λŸ¬ μƒ˜ν”Œμ„ λ¬Άμ–΄ κ· ν˜• 작힌 ν•™μŠ΅μ„ μ§„ν–‰ν•œλ‹€.

  • ν•™μŠ΅λ₯ μ€ 핡심 ν•˜μ΄νΌνŒŒλΌλ―Έν„°μ΄λ©°, RMSprop, Adamκ³Ό 같은 μ•Œκ³ λ¦¬μ¦˜μ€ μ μ‘μ μœΌλ‘œ ν•™μŠ΅λ₯ μ„ μ‘°μ •ν•œλ‹€.

profile
🐾

0개의 λŒ“κΈ€