CS229: Machine Learning

1.Lecture 01. Introduction & Basic Concepts

post-thumbnail

2.Lecture 02. Linear Regression & Gradient Descent

post-thumbnail

3.Lecture 03. Locally Weighted & Logistic Regression

post-thumbnail

4.Lecture 04. Perceptron & Generalized Linear Model

post-thumbnail

5.Lecture 05. GDA & Naive Bayes

post-thumbnail

6.Lecture 06. Support Vector Machines

post-thumbnail

7.Lecture 07. Kernels

post-thumbnail

8.Lecture 08. Data Splits, Models & Cross-Validation

post-thumbnail

9.Lecture 09. Approx./Estimation Error & ERM

post-thumbnail

10.Lecture 10. Decision Trees and Ensemble Methods

post-thumbnail

11.Lecture 11. Introduction to Neural Networks

post-thumbnail

12.Lecture 12. Backprop & Improving Neural Networks

post-thumbnail

13.Lecture 13. Debugging ML Models and Error Analysis

post-thumbnail

14.Lecture 14. Expectation-Maximization Algorithms

post-thumbnail

15.Lecture 15. EM Algorithm & Factor Analysis

post-thumbnail

16.Lecture 16. Independent Component Analysis & RL

post-thumbnail

17.Lecture 17. MDPs & Value/Policy Iteration

post-thumbnail

18.Lecture 18. Continuous State MDP & Model Simulation

post-thumbnail