모두를 위한 딥러닝 2 :: 10-5 Advanced CNN ( VGG )

Uomnf97·2021년 8월 2일
0
post-custom-banner

VGG-Net

  • Oxford VGG(Visual Geometry Group) 에서 만든 Network
  • 전부다 3X3 Convolution, stride =1, padding =1

VGG 16

torch.vision.vgg

  • karming_normalizaion : activation function 초기화를 잘 해주기 위해서 사용
  • in_channels 에 채널의 값이 변화할 때 해당되는 채널 수를 대입해줘야 함 .

소스코드

import torch.nn as nn
import torch.utils.model_zoo as model_zoo

__all__ = [
    'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
    'vgg19_bn', 'vgg19',
]


model_urls = {
    'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
    'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
    'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
    'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
    'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
    'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
    'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
    'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}

class VGG(nn.Module):
    def __init__(self, features, num_classes=1000, init_weights=True):
        super(VGG, self).__init__()
        
        self.features = features #convolution
        
        self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
        
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, num_classes),
        )#FC layer
        
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        x = self.features(x) #Convolution 
        x = self.avgpool(x) # avgpool
        x = x.view(x.size(0), -1) #
        x = self.classifier(x) #FC layer
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)
                
# 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
    
def make_layers(cfg, batch_norm=False):
    layers = []
    in_channels = 3
    
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
                     
    return nn.Sequential(*layers)
    
cfg = {
    'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], #8 + 3 =11 == vgg11
    'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], # 10 + 3 = vgg 13
    'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], #13 + 3 = vgg 16
    'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], # 16 +3 =vgg 19
    'custom' : [64,64,64,'M',128,128,128,'M',256,256,256,'M']
}

conv = make_layers(cfg['custom'], batch_norm=True)

CNN = VGG(make_layers(cfg['custom']), num_classes=10, init_weights=True)

CNN

VGG CIFAR10

  • 소스코드
import torch
import torch.nn as nn

import torch.optim as optim

import torchvision
import torchvision.transforms as transforms

import visdom

vis = visdom.Visdom()
vis.close(env="main")

def loss_tracker(loss_plot, loss_value, num):
    '''num, loss_value, are Tensor'''
    vis.line(X=num,
             Y=loss_value,
             win = loss_plot,
             update='append'
             )
             
device = 'cuda' if torch.cuda.is_available() else 'cpu'

torch.manual_seed(777)
if device =='cuda':
    torch.cuda.manual_seed_all(777)
    
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./cifar10', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=512,
                                          shuffle=True, num_workers=0)

testset = torchvision.datasets.CIFAR10(root='./cifar10', train=False,
                                       download=True, transform=transform)

testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=0)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
           
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
# functions to show an image


def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
vis.images(images/2 + 0.5)

# show images
#imshow(torchvision.utils.make_grid(images))

# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

import vgg
#import torchvision.models.vgg as vgg

cfg = [32,32,'M', 64,64,128,128,128,'M',256,256,256,512,512,512,'M'] #13 + 3 =vgg16

class VGG(nn.Module):

    def __init__(self, features, num_classes=1000, init_weights=True):
        super(VGG, self).__init__()
        self.features = features
        #self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
        self.classifier = nn.Sequential(
            nn.Linear(512 * 4 * 4, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(4096, num_classes),
        )
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        #x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)
                
vgg16= VGG(vgg.make_layers(cfg),10,True).to(device)

a=torch.Tensor(1,3,32,32).to(device)
out = vgg16(a)
print(out)

criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(vgg16.parameters(), lr = 0.005,momentum=0.9)

lr_sche = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.9)

loss_plt = vis.line(Y=torch.Tensor(1).zero_(),opts=dict(title='loss_tracker', legend=['loss'], showlegend=True))

print(len(trainloader))
epochs = 50

for epoch in range(epochs):  # loop over the dataset multiple times
    running_loss = 0.0
    lr_sche.step()
    for i, data in enumerate(trainloader, 0):
        # get the inputs
        inputs, labels = data
        inputs = inputs.to(device)
        labels = labels.to(device)

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = vgg16(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 30 == 29:    # print every 30 mini-batches
            loss_tracker(loss_plt, torch.Tensor([running_loss/30]), torch.Tensor([i + epoch*len(trainloader) ]))
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 30))
            running_loss = 0.0
        

print('Finished Training')

dataiter = iter(testloader)
images, labels = dataiter.next()

# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

outputs = vgg16(images.to(device))

_, predicted = torch.max(outputs, 1)

print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
                              for j in range(4)))
                              
correct = 0
total = 0

with torch.no_grad():
    for data in testloader:
        images, labels = data
        images = images.to(device)
        labels = labels.to(device)
        outputs = vgg16(images)
        
        _, predicted = torch.max(outputs.data, 1)
        
        total += labels.size(0)
        
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))
profile
사회적 가치를 실현하는 프로그래머
post-custom-banner

0개의 댓글