LeNet5: Y LeCun. GradientBased Learning Applied to Document Recognition. IEEE 1998.
AlexNet: A Krizhevsky. ImageNet Classification with Deep Convolutional Neural Networks. NeurIPS 2012.
VGGNet: K Simonyan. Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR 2015.
Convolution: M Lin. Network in network. ICLR 2013.
GoogLeNet: C Szegedy. Going deeper with convolutions. CVPR 2015.
Batch Normalization: S loffe. Batch normalization: Accelerating deep network training by reducing internal covariate shift. ICML 2015.
ResNet: K He. Deep Residual Learning for Image Recognition. CVPR 2016.
DCN: J Dai. Deformable Convolutional Networks. ICCV 2017.
R-CNN: R Girshick. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 2014.
Fast R-CNN: R Girshick. Fast R-CNN. ICCV 2015.
YOLO v1: J Redmon. You Only Look Once: Unified, Real-Time Object Detection. CVPR 2016.
FPN: TY Lin. Feature Pyramid Networks for Object Detection. CVPR 2017.
Focal Loss, RetinaNet: TY Lin. Focal Loss for Dense Object Detection. ICCV 2017.
YOLO v3: J Redmon. YOLOv3: An Incremental Improvement. arXiv 2018.
CenterNet: X Zhou. Objects as Points. arXiv 2019.
CenterPoint: T Yin. Center-based 3D Object Detection and Tracking. CVPR 2021.
FCOS3D: T Wang. Fully Convolutional One-Stage Monocular 3D Object Detection. ICCV 2021.
Transformer: A Vaswani. Attention Is All You Need. NeurIPS 2017.