머신러닝/딥러닝 지식

1.PCA 간단한 정리

post-thumbnail

2.Depth-wise seprable convolution

post-thumbnail

3.NDCG

post-thumbnail

4.Sigmoid vs Softmax

post-thumbnail

5.[딥러닝] 옵티마이저

post-thumbnail

6.나이브베이즈 분류기

post-thumbnail

7.L1 규제, L2 규제

post-thumbnail

8.BLEU Score

post-thumbnail

9.트랜스포머 정리

post-thumbnail

10.NLP, NLU, NLG의 간단한 이해

post-thumbnail

11.Gradient Descent, Backpropagation, Optimizer

post-thumbnail

12.Gradient Vanishing, activation function, gradient initialize

post-thumbnail

13.DeepLab 요약 정리

post-thumbnail

14.CNN이 왜 이미지 처리에 적합할까?

post-thumbnail

15.[논문 리뷰] Multi-Modal Dialog State Tracking for Interactive Fashion Recommendation

post-thumbnail

16.batch size와 learning rate의 관계

post-thumbnail

17.Sigmoid function & zero-centered

post-thumbnail

18.BatchNormalization

post-thumbnail

19.GAN에서 Generator 쪽에도 BN을 적용해도 될까?

post-thumbnail

20.Stacking Ensemble 원리

post-thumbnail