Machine Learning(ML) 기초 및 응용

1.머신러닝 개요

post-thumbnail

2.머신러닝 분석- Iris Dataset

post-thumbnail

3.데이터셋 나누기와 모델검증

post-thumbnail

4.데이터 전처리

post-thumbnail

5.평가지표

post-thumbnail

6.과적합과 일반화 / Gredserch / pipeline

post-thumbnail

7.의사결정트리,랜덤포레스트

post-thumbnail

8.Ensemble(Boosting/ 투표방식-Voting)

post-thumbnail

9.선형회귀

post-thumbnail

10.최적화-경사하강법

post-thumbnail

11.로지스틱 회귀 (LogisticRegression)

post-thumbnail