BOJ 알고리즘 캠프에는 총 N명이 참가하고 있다. 사람들은 0번부터 N-1번으로 번호가 매겨져 있고, 일부 사람들은 친구이다.오늘은 다음과 같은 친구 관계를 가진 사람 A, B, C, D, E가 존재하는지 구해보려고 한다.A는 B와 친구다.B는 C와 친구다.C는 D와
정수를 저장하는 덱(Deque)를 구현한 다음, 입력으로 주어지는 명령을 처리하는 프로그램을 작성하시오.명령은 총 여덟 가지이다.push_front X: 정수 X를 덱의 앞에 넣는다.push_back X: 정수 X를 덱의 뒤에 넣는다.pop_front: 덱의 가장 앞에
정수를 저장하는 큐를 구현한 다음, 입력으로 주어지는 명령을 처리하는 프로그램을 작성하시오.명령은 총 여섯 가지이다.push X: 정수 X를 큐에 넣는 연산이다.pop: 큐에서 가장 앞에 있는 정수를 빼고, 그 수를 출력한다. 만약 큐에 들어있는 정수가 없는 경우에는
n개의 정수로 이루어진 임의의 수열이 주어진다. 우리는 이 중 연속된 몇 개의 수를 선택해서 구할 수 있는 합 중 가장 큰 합을 구하려고 한다. 단, 수는 한 개 이상 선택해야 한다. 또, 수열에서 수를 하나 제거할 수 있다. (제거하지 않아도 된다)예를 들어서 10,
수열 S가 어떤 수 Sk를 기준으로 S1 < S2 < ... Sk-1 < Sk > Sk+1 > ... SN-1 > SN을 만족한다면, 그 수열을 바이토닉 수열이라고 한다.예를 들어, {10, 20, 30, 25, 20}과 {10, 20, 30, 40},
수열 A가 주어졌을 때, 가장 긴 감소하는 부분 수열을 구하는 프로그램을 작성하시오.예를 들어, 수열 A = {10, 30, 10, 20, 20, 10} 인 경우에 가장 긴 감소하는 부분 수열은 A = {10, 30, 10, 20, 20, 10} 이고, 길이는 3이다
수열 A가 주어졌을 때, 그 수열의 증가 부분 수열 중에서 합이 가장 큰 것을 구하는 프로그램을 작성하시오.예를 들어, 수열 A = {1, 100, 2, 50, 60, 3, 5, 6, 7, 8} 인 경우에 합이 가장 큰 증가 부분 수열은 A = {1, 100, 2, 5
위 그림은 크기가 5인 정수 삼각형의 한 모습이다.맨 위층 7부터 시작해서 아래에 있는 수 중 하나를 선택하여 아래층으로 내려올 때, 이제까지 선택된 수의 합이 최대가 되는 경로를 구하는 프로그램을 작성하라. 아래층에 있는 수는 현재 층에서 선택된 수의 대각선 왼쪽 또
효주는 포도주 시식회에 갔다. 그 곳에 갔더니, 테이블 위에 다양한 포도주가 들어있는 포도주 잔이 일렬로 놓여 있었다. 효주는 포도주 시식을 하려고 하는데, 여기에는 다음과 같은 두 가지 규칙이 있다.포도주 잔을 선택하면 그 잔에 들어있는 포도주는 모두 마셔야 하고,
오르막 수는 수의 자리가 오름차순을 이루는 수를 말한다. 이때, 인접한 수가 같아도 오름차순으로 친다.예를 들어, 2234와 3678, 11119는 오르막 수이지만, 2232, 3676, 91111은 오르막 수가 아니다.수의 길이 N이 주어졌을 때, 오르막 수의 개수를
어떤 동물원에 가로로 두칸 세로로 N칸인 아래와 같은 우리가 있다.이 동물원에는 사자들이 살고 있는데 사자들을 우리에 가둘 때, 가로로도 세로로도 붙어 있게 배치할 수는 없다. 이 동물원 조련사는 사자들의 배치 문제 때문에 골머리를 앓고 있다.동물원 조련사의 머리가 아
RGB거리에는 집이 N개 있다. 거리는 선분으로 나타낼 수 있고, 1번 집부터 N번 집이 순서대로 있다.집은 빨강, 초록, 파랑 중 하나의 색으로 칠해야 한다. 각각의 집을 빨강, 초록, 파랑으로 칠하는 비용이 주어졌을 때, 아래 규칙을 만족하면서 모든 집을 칠하는 비
정수 4를 1, 2, 3의 합으로 나타내는 방법은 총 7가지가 있다. 합을 나타낼 때는 수를 1개 이상 사용해야 한다.1+1+1+11+1+21+2+12+1+12+21+33+1정수 n이 주어졌을 때, n을 1, 2, 3의 합으로 나타내는 방법의 수를 구하는 프로그램을 작
0부터 N까지의 정수 K개를 더해서 그 합이 N이 되는 경우의 수를 구하는 프로그램을 작성하시오.덧셈의 순서가 바뀐 경우는 다른 경우로 센다(1+2와 2+1은 서로 다른 경우). 또한 한 개의 수를 여러 번 쓸 수도 있다.첫째 줄에 두 정수 N(1 ≤ N ≤ 200),
어떤 자연수 N은 그보다 작거나 같은 제곱수들의 합으로 나타낼 수 있다. 예를 들어 11=$$3^2$$+$$1^2$$+$$1^2$$(3개 항)이다. 이런 표현방법은 여러 가지가 될 수 있는데, 11의 경우 11=$$2^2$$+$$2^2$$+$$1^2$$+$$1^2$$+
n개의 정수로 이루어진 임의의 수열이 주어진다. 우리는 이 중 연속된 몇 개의 수를 선택해서 구할 수 있는 합 중 가장 큰 합을 구하려고 한다. 단, 수는 한 개 이상 선택해야 한다.예를 들어서 10, -4, 3, 1, 5, 6, -35, 12, 21, -1 이라는 수
수열 A가 주어졌을 때, 가장 긴 증가하는 부분 수열을 구하는 프로그램을 작성하시오.예를 들어, 수열 A = {10, 20, 10, 30, 20, 50} 인 경우에 가장 긴 증가하는 부분 수열은 A = {10, 20, 10, 30, 20, 50} 이고, 길이는 4이다.
2-1. 서론 명령어 : 컴퓨터 언어에서의 단어 명령어집합 : 명령어의 어휘 2-2. 하드웨어 연산 MIPS 산술 명령어 반드시 한 종류의 연산만 지시 항상 변수 3개를 갖는 형식 컴파일러에 의해 변환 >- 두 변수 b와 c를 더해서 합을 a에 넣는 MIPS 어셈블
수열 A가 주어졌을 때, 가장 긴 증가하는 부분 수열을 구하는 프로그램을 작성하시오.예를 들어, 수열 A = {10, 20, 10, 30, 20, 50} 인 경우에 가장 긴 증가하는 부분 수열은 A = {10, 20, 10, 30, 20, 50} 이고, 길이는 4이다.
0과 1로만 이루어진 수를 이진수라 한다. 이러한 이진수 중 특별한 성질을 갖는 것들이 있는데, 이들을 이친수(pinary number)라 한다. 이친수는 다음의 성질을 만족한다.이친수는 0으로 시작하지 않는다.이친수에서는 1이 두 번 연속으로 나타나지 않는다. 즉,