DeepLearning

1.🧠 딥러닝이란? | 내가보려고정리한AI🧐

post-thumbnail

2.🤖 Perceptron을 이해하고 Pytorch로 MLP 구현해보기 | 내가보려고정리한AI🧐

post-thumbnail

3.⛰️ 최적화(Optimization)-1. 일반화(Generalization)편 | 내가보려고정리한AI🧐

post-thumbnail

4.⛰️ 최적화(Optimization)-2. 경사하강법(Gradient descent)편 | 내가보려고정리한AI🧐

post-thumbnail

5.⛰️ 최적화(Optimization)-3.정규화(Regularization) | 내가보려고정리한AI🧐

post-thumbnail

6.⛰️ 최적화(Optimization)-4.앙상블(Ensemble) | 내가보려고정리한AI🧐

post-thumbnail

7.🤖 CNN(Convolutional Neural Network)을 이해하고 Pytorch로 구현해보자 | 내가보려고정리한AI🧐

post-thumbnail

8.🤖 RNN(Recurrent Neural Network)과 LSTM, GPU를 이해보고 Pytorch로 구현해보자 | 내가보려고정리한AI🧐

post-thumbnail

9.🤖 Computer Vision이란? | 내가보려고정리한AI🧐

post-thumbnail

10.📸 Image Classification(이미지 분류)(1)-LeNet,AlexNet,VGG부터 Degradation까지 | 내가보려고정리한AI🧐

post-thumbnail

11.📸 Image Classification(이미지 분류)(2)- GoogLeNet, ResNet,DenseNet,SENet,EfficientNet| 내가보려고정리한AI🧐

post-thumbnail

12. 📸 Data augmentation(데이터 증강) - Image편 | 내가보려고정리한AI🧐

post-thumbnail

13. 📸 Image Classification(이미지 분류)(3)- 👨‍🏫Transfer learning, Knowledge distillation, Noisy Student까지 | 내가보려고정리한AI🧐

post-thumbnail

14.[Object Detection] 2 stage detectors

post-thumbnail

15.[Object Detection] Neck

post-thumbnail

16.[Data Centric] Software 1.0 VS Software 2.0

post-thumbnail