[Paper Review] 2D Object Detection

1.Precision-Recall Curve, mAP

post-thumbnail

2.[2016 IEEE][Simple Review] Region-based Convolutional Networks for Accurate Object Detection and Segmentation

post-thumbnail

3.[2015 ICCV][Simple Review] Fast R-CNN

post-thumbnail

4.[2015 NeurIPS] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

post-thumbnail

5.[2016 CVPR] (YOLOv1) You Only Look Once : Unified, Real-Time Object Detection

post-thumbnail

6.[2017 CVPR][Simple Review] (YOLO9000, YOLOv2) YOLO9000: Better, Faster, Stronger

post-thumbnail

7.[2017 ICCV](RetinaNet) Focal Loss for Dense Object Detection

post-thumbnail

8.[2018 arXiv][Simple Review] (YOLOv3) YOLOv3: An Incremental Improvement

post-thumbnail

9.[2020 CVPR](YOLOv4) YOLOv4: Optimal Speed and Accuracy of Object Detection

post-thumbnail

10.Prerequisite Knowledge for Reading the YOLOv4 Paper

post-thumbnail

11.[2020 ECCV] [DETR] End-to-End Object Detection with Transformers

post-thumbnail

12.[2021 ICLR] [Deformable DETR] Deformable DETR: Deformable Transformers for End-to-End Object Detection

post-thumbnail

13.[2022 ICLR] DAB-DETR: DYNAMIC ANCHOR BOXES ARE BETTER QUERIES FOR DETR

post-thumbnail

14.[2022 arXiv] RTMDet: An Empirical Study of Designing Real-Time Object Detectors

post-thumbnail

15.[2023 CVPR] YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

post-thumbnail

16.[2024 CVPR] [RT-DETR] DETRs Beat YOLOs on Real-time Object Detection

post-thumbnail

17.[DETR] > [Deformable DETR] > [RT DETR]

post-thumbnail

18.[NeurIPS 2024] YOLOv10: Real-Time End-to-End Object Detection

post-thumbnail

19.[2025 NeurIPS] YOLOv12: Attention-Centric Real-Time Object Detectors

post-thumbnail