딥러닝AI: 프롬프트 엔지니어링 강의 - 1. 소개
딥러닝AI: 프롬프트 엔지니어링 강의 - 2. 가이드라인
딥러닝AI: 프롬프트 엔지니어링 강의 - 3. 반복적 프롬프트 개선
딥러닝AI: 프롬프트 엔지니어링 강의 - 4. 다양한 활용 (요약, 추론, 변형, 확장, 챗봇)
Black-Box Tuning for Language-Model-as-a-Service, ICML 2022
BBTv2: Towards a Gradient-Free Future with Large Language Models, EMNLP 2022
Instruction Induction: From Few Examples to Natural Language Task Descriptions, arXiv, 2022
Generative Prompt Tuning for Relation Classification, EMNLP 2022
MetaPrompting: Learning to Learn Better Prompts, COLING 2022
RLPROMPT: Optimizing Discrete Text Prompts with Reinforcement Learning, EMNLP 2022
TEMPERA: Test-Time Prompt Editing via Reinforcement Learning, ICLR 2023
Large Language Models are Human-Level Prompt Engineers, ICLR 2023
PromptGen: Automatically Generate Prompts using Generative Models, NAACL 2023
Ask Me Anything: A simple strategy for prompting language models, ICLR 2023 notable top 25%
Exploring Lottery Prompts for Pre-trained Language Models, ACL 2023
Automatic Prompt Optimization with “Gradient Descent” and Beam Search, arXiv 2023
Large Language Models Sensitivity to The Order of Options in Multiple-Choice Questions
Context-faithful Prompting for Large Language Models, arXiv 2023