딥러닝

1.Gradient Descent(경사 하강법)

post-thumbnail

2.Back Propagation(역전파)와 Loss function(손실함수) 선택 방법

post-thumbnail

3.Cross Entropy Loss

post-thumbnail

4.KL-divergence

post-thumbnail

5.Softmax Regression(소프트맥스 회귀)

post-thumbnail

6.Logistic Regression(로지스틱 회귀)

post-thumbnail

7.Linear Regression(선형 회귀)

post-thumbnail

8.Manifold Learning(매니폴드 학습)

post-thumbnail

9.Autoencoder(오토인코더)

post-thumbnail

10.GANs

post-thumbnail

11.VariationalAutoencoder(VAE)

post-thumbnail

12.VAE에서 MLE를 이용하지 않는 이유

post-thumbnail

13.Variational Autoencoder (VAE) vs Autoencoder (AE)

post-thumbnail

14.Diffusion Model(DDPM)

post-thumbnail

15.DDPM 코드 구현

post-thumbnail