CS224n Review

1.[CS224n] Lecture 1 - Introduction and Word Vector

post-thumbnail

2.[CS224n] Lecture 2 - Word Vectors and Word Senses

post-thumbnail

3.[CS224n] Lecture 3 - Word Window Classification, Neural Networks, and Matrix Calculus

post-thumbnail

4.[CS224n] Lecture 4 - Backpropagation and Computation Graph

post-thumbnail

5.[CS224n] Lecture 5 - Linguistic Structure: Dependency Parsing

post-thumbnail

6.[CS224n] Lecture 6 - Language Models and Recurrent Neural Network

post-thumbnail

7.[CS224n] Lecture 7 - Vanishing Gradients And Fancy RNNs

post-thumbnail

8.[CS224n] Lecture 8 - Machine Translation, Sequence-to-sequence and Attention

post-thumbnail

9.[CS224n] Lecture 9 - Practical Tips for Final Projects

post-thumbnail

10.[CS224n] Lecture10 - Question Answering

post-thumbnail

11.[CS224n] Lecture 11 - ConvNets for NLP

post-thumbnail

12.[CS224n] Lecture 12 - Subwords

post-thumbnail

13.[CS224n] Lecture 13 - Contextual Word Embeddings

post-thumbnail

14.[CS224n] Lecture 14 - Transformer and Self-Attention

post-thumbnail

15.[CS224n] Lecture 15 - Natural Language Generation

post-thumbnail

16.[CS224n] Lecture 18 - Constituency Parsing TreeRNNS

post-thumbnail