Machine Learning에 대해 알아보자

1.[Machine Learning] Iris Classification (1)

post-thumbnail

2.[Machine Learning] Iris Classification with Decision Tree

post-thumbnail

3.[Machine Learning] 머신러닝의 종류

post-thumbnail

4.[Machine Learning] Regression & Linear Regression (OLS)

post-thumbnail

5.[Machine Learning] Encoder & Scaler (머신러닝에서의 전처리)

post-thumbnail

6.[Machine Learning] 모델 평가의 개념

post-thumbnail

7.[Machine Learning] 이진 분류에서의 모델 평가

post-thumbnail

8.[Machine Learning] Decision Tree를 이용한 와인 데이터 분석

post-thumbnail

9.[Machine Learning] Pipeline

post-thumbnail

10.[Machine Learning] Logistic Regression

post-thumbnail

11.[Machine Learning] 하이퍼파라미터 튜닝 & 교차 검증 실습

post-thumbnail

12.[Machine Learning] Precision & Recall

post-thumbnail

13.[Machine Learning] k-최근접 이웃 (k-Nearest Neighbors, kNN)

post-thumbnail

14.[ML] 앙상블(Ensemble) 기법

post-thumbnail

15.[ML] PCA (Principal Component Analysis, 주성분 분석)

post-thumbnail

16.[ML] PCA (Principal Component Analysis, 주성분 분석) (시각화 실습)

post-thumbnail

17.[ML] Clustering (군집화)

post-thumbnail