CS224W

1.<CS224W> Lecture 1: Introduction

post-thumbnail

2.<CS224W> Lecture 2: Traditional Feature-based Methods

post-thumbnail

3.<CS224W> Lecture 3: Node Embeddings

post-thumbnail

4.<CS224W> Lecture 4: Graph as Matrix

post-thumbnail

5.<CS224W> Lecture 5: Label Propagation for Node Classification

post-thumbnail

6.<CS224W> Lecture 6. Graph Neural Networks 1: GNN Model

post-thumbnail

7.<CS224W> Lecture 7. Graph Neural Networks 2: Design Space

post-thumbnail

8.<CS224W> Lecture 8. Applications of Graph Neural Networks

post-thumbnail

9.<CS224W> Lecture 9. Theory of Graph Neural Networks

post-thumbnail

10.<CS224W> Lecture 10. Knowledge Graph Embeddings

post-thumbnail

11.<CS224W> Lecture 11. Reasoning over Knowledge Graphs

post-thumbnail

12.<CS224W> Lecture 12. Frequent Subgraph Mining with GNNs

post-thumbnail

13.<CS224W> Lecture 13. Community Structure in Networks

post-thumbnail

14.<CS224W> Lecture 14. Traditional Generative Models for Graphs

post-thumbnail

15.<CS224W> Lecture 15. Traditional Generative Models for Graphs

post-thumbnail

16.<CS224W> Lecture 16. Advanced Topics on GNNs

post-thumbnail

17.<CS224W> Lecture 17. Scaling Up GNNs

post-thumbnail