머신러닝 클리닉

1.#1 머신러닝의 정의와 목적

post-thumbnail

2.#2 Train-Vaildation-Test

post-thumbnail

3.#3 머신러닝의 Task

post-thumbnail

4.#4 머신러닝의 구분

post-thumbnail

5.#5 Linear ?

post-thumbnail

6. #6 수식의 이해 : Simple

post-thumbnail

7.#7 수식의 이해 : Multiple

post-thumbnail

8.#8 선형회귀의 Task

post-thumbnail

9.#9 Non-Linear ?

post-thumbnail

10. #10 Binary & Multinomial

post-thumbnail

11.#11 ROC & AUROC

post-thumbnail

12.#12 Logistic Regression

post-thumbnail

13.#13 Softmax Function

post-thumbnail

14.#14 Cross Entropy

post-thumbnail

15.#15 Generalization, Normalization, Standardization

post-thumbnail

16.#16 Regularization :: L1 & L2 수식의 이해

post-thumbnail

17.#17 SVM 개론

post-thumbnail

18.#18 SVM & Feature Scaling

post-thumbnail

19.#19 Ensemble

post-thumbnail

20.#20 Gradient Boost

post-thumbnail

21.#21 Boosting

post-thumbnail

22.#22 차원의 저주

post-thumbnail

23.#23 PCA & LDA

post-thumbnail

24.#24 SVD

post-thumbnail

25.#25 PCA vs SVD

post-thumbnail

26.#26 Optimization

post-thumbnail

27.#27 Gradient Descent (경사 하강법)

post-thumbnail

28.#28 Learning Rate (학습률)

post-thumbnail

29.#29 Derivative Term

post-thumbnail